Phased Array System Toolbox™
Reference

"

MATLAB&SIMULINK?

R2019b >) MathWorks’

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ Reference
© COPYRIGHT 2011-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for version 1.0 (Release 2011a)

Revised for Version 1.1 (R2011b)
Revised for Version 1.2 (R2012a)
Revised for Version 1.3 (R2012b)
Revised for Version 2.0 (R2013a)
Revised for Version 2.1 (R2013b)
Revised for Version 2.2 (R2014a)
Revised for Version 2.3 (R2014b)
Revised for Version 3.0 (R2015a)
Revised for Version 3.1 (R2015b)
Revised for Version 3.2 (R2016a)
Revised for Version 3.3 (R2016Db)
Revised for Version 3.4 (R2017a)
Revised for Version 3.5 (R2017Db)
Revised for Version 3.6 (R2018a)
Revised for Version 4.0 (R2018b)
Revised for Version 4.1 (R2019a)
Revised for Version 4.2 (R2019b)

o ~ ~ ~ ~ ~ ~ ~ —~ —~ —

Alphabetical List

1]

Functions-Alphabetical List

2|

Blocks — Alphabetical List

3|

App Reference

4

Alphabetical List

1 Alphabetical List

1-2

phased.ADPCACanceller

Package: phased

Adaptive DPCA (ADPCA) pulse canceller

Description

The ADPCACanceller object implements an adaptive displaced phase center array pulse
canceller for a uniform linear array (ULA).

To compute the output signal of the space time pulse canceller:

1 Define and set up your ADPCA pulse canceller. See “Construction” on page 1-2.

2 (Call step to execute the ADPCA algorithm according to the properties of
phased.ADPCACanceller. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object™, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

H = phased.ADPCACanceller creates an adaptive displaced phase center array
(ADPCA) canceller System object, H. This object performs two-pulse ADPCA processing on
the input data.

H = phased.ADPCACanceller(Name,Value) creates an ADPCA object, H, with each
specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Namel,Valuel,...,NameN,ValueN). See “Properties” on
page 1-3 for the list of available property names.

phased.ADPCACanceller

Properties

SensorArray

Uniform linear array

Uniform linear array, specified as a phased.ULA System object.
Default: phased.ULA with default property values
PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You
can specify this property as single or double precision.

Default: Speed of light
OperatingFrequency
System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz. You can specify this property as single or double
precision.

Default: 3e8
PRFSource
Source of pulse repetition frequency

Source of the PRF values for the STAP processor, specified as 'Property' or 'Input
port'. When you set this property to 'Property'’, the PRF is determined by the value
of the PRF property. When you set this property to 'Input port', the PRF is determined
by an input argument to the step method at execution time.

Default: 'Property’
PRF

Pulse repetition frequency

1-3

1 Alphabetical List

Pulse repetition frequency (PRF) of the received signal, specified as a positive scalar.
Units are in Hertz. This property can be specified as single or double precision.

Dependencies

To enable this property, set the PRFSource property to 'Property"'.
Default: 1

DirectionSource

Source of receiving main lobe direction

Specify whether the targeting direction for the STAP processor comes from the
Direction property of this object or from an input argument in step. Values of this
property are:

'Property' The Direction property of this object specifies the

targeting direction.

'"Input port' An input argument in each invocation of step specifies the

targeting direction.

1-4

Default: 'Property’
Direction
Receiving mainlobe direction (degrees)

Specify the receiving mainlobe direction of the receiving sensor array as a column vector
of length 2. The direction is specified in the format of [AzimuthAngle;
ElevationAngle] (in degrees). Azimuth angle should be between -180 and 180.
Elevation angle should be between -90 and 90. This property applies when you set the
DirectionSource property to 'Property'. This property can be specified as single or
double precision.

Default: [0; 0]
NumPhaseShifterBits
Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights. Specify the number of bits as a non-negative integer. A value of zero

phased.ADPCACanceller

indicates that no quantization is performed. You can specify this property as single or
double precision.

Default: 0
DopplerSource
Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler
property of this object or from an input argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the Doppler.
'"Input port' An input argument in each invocation of step specifies the
Doppler.

Default: 'Property’

Doppler

Targeting Doppler frequency (Hz)

Specify the targeting Doppler of the STAP processor as a scalar. This property applies
when you set the DopplerSource property to 'Property'. This property can be
specified as single or double precision.

Default: 0

WeightsOutputPort

Output processing weights

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the
weights, set this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

1-5

1 Alphabetical List

1-6

Set this property to true to output the processing result before applying the Doppler
filtering. Set this property to false to output the processing result after the Doppler
filtering.

Default: false

NumGuardCells

Number of guard cells

Specify the number of guard cells used in the training as an even integer. This property
specifies the total number of cells on both sides of the cell under test. This property can

be specified as single or double precision.

Default: 2, indicating that there is one guard cell at both the front and back of the cell
under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an even integer. Whenever
possible, the training cells are equally divided before and after the cell under test. This

property can be specified as single or double precision.

Default: 2, indicating that there is one training cell at both the front and back of the cell
under test

Methods

step Perform ADPCA processing on input data

Common to All System Objects

release |Allow System object property value changes

Examples

phased.ADPCACanceller

Process Radar Data Cube Using ADPCA Processor

Process a radar data cube using an ADPCA processor. Weights are calculated for the 71st
cell of the data cube. Set the look direction to (0,0) degrees and the Doppler shift to
12.980 kHz.

Load radar data file and compute weights

load STAPExampleData;

canceller = phased.ADPCACanceller('SensorArray',STAPEx HArray, ...
"PRF',STAPEX_PRF, ...
'PropagationSpeed',STAPEx PropagationSpeed, ...
'OperatingFrequency',STAPEx OperatingFrequency,...
‘NumTrainingCells',100,...
'WeightsOutputPort',true,...
'DirectionSource', 'Input port',...
'DopplerSource', 'Input port');

[y,w] = canceller(STAPEx ReceivePulse,71,[0; 0],12.980e3);

Create AnglerDoppler System object and plot response

sAngeDop = phased.AngleDopplerResponse(...
'SensorArray',canceller.SensorArray, ...
'OperatingFrequency',canceller.OperatingFrequency, ...
'PRF',canceller.PRF,...
'PropagationSpeed', canceller.PropagationSpeed);
plotResponse(sAngeDop,w)

1-7

1 Alphabetical List

Doppler Frequency (Hz)

1-8

«10% Angle-Doppler Response Pattern

1.5

-

0.5
o
=
i

0.5

-1

-80 60 40 -20 0 20 40 60 80
Angle (degrees)

Algorithms

Single Precision

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

phased.ADPCACanceller

References

[1] Guerci,]. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

See Also

phased.AngleDopplerResponse | phased.DPCACanceller |
phased.STAPSMIBeamformer | phitheta2azel | uv2azel

Introduced in R2012a

1-9

1 Alphabetical List

1-10

step

System object: phased.ADPCACanceller
Package: phased

Perform ADPCA processing on input data

Syntax

step(H, X, CUTIDX)
step(H, X, CUTIDX, ANG)
step(H,X,CUTIDX,DOP)
step(H, X, CUTIDX, PRF)
Y, W] = step(__)

Y
Y
Y
Y
[

Description

Note Starting in R2016Db, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Y = step(H,X,CUTIDX) applies the ADPCA pulse cancellation algorithm to the input
data X. The algorithm calculates the processing weights according to the range cell
specified by CUTIDX. This syntax is available when the DirectionSource property is
'"Property' and the DopplerSource property is 'Property'. The receiving mainlobe
direction is the Direction property value. The output Y contains the result of pulse
cancellation either before or after Doppler filtering, depending on the
PreDopplerQutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving main lobe direction. This syntax
is available when the DirectionSource propertyis 'Input port' and the
DopplerSource property is 'Property"'.

step

Y = step(H,X,CUTIDX,DOP) uses DOP as the targeting Doppler frequency. This syntax
is available when the DopplerSource property is ' Input port'.

Y = step(H,X,CUTIDX, PRF) uses PRF as the pulse repetition frequency. This syntax is
available when the PRFSource property is ' Input port'.

[Y,W] = step() also returns the processing weights, W. This syntax is available
when the WeightsOutputPort property is true.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H
Pulse canceller object.
X

Input data. X must be a 3-dimensional M-by-N-by-P numeric array whose dimensions are
(range, channels, pulses). You can specify this argument as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

CUTIDX
Range cell. You can specify this argument as single or double precision.
PRF

Pulse repetition frequency specified as a positive scalar. To enable this argument, set the
PRFSource property to ' Input port'. You can specify this argument as single or
double precision. Units are in Hertz.

1-11

1 Alphabetical List

ANG

Receiving main lobe direction. ANG must be a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle], in degrees. The azimuth angle must be between -180 and 180. The
elevation angle must be between -90 and 90. You can specify this argument as single or
double precision.

Default: Direction property of H
DoP

Targeting Doppler frequency in hertz. DOP must be a scalar. You can specify this argument
as single or double precision.

Default: Doppler property of H

Output Arguments
Y

Result of applying pulse cancelling to the input data. The meaning and dimensions of Y
depend on the PreDopplerQutput property of H:

o IfPreDopplerOQutput is true, Y contains the pre-Doppler data. Y is an M-by-(P-1)
matrix. Each column in Y represents the result obtained by cancelling the two
successive pulses.

* IfPreDopplerOutput is false, Y contains the result of applying an FFT-based
Doppler filter to the pre-Doppler data. The targeting Doppler is the Doppler property
value. Y is a column vector of length M.

W

Processing weights the pulse canceller used to obtain the pre-Doppler data. The
dimensions of W depend on the PreDopplerQutput property of H:

» If PreDopplerQutput is true, Wis a 2N-by-(P-1) matrix. The columns in W
correspond to successive pulses in X.

+ If PreDopplerQutput is false, Wis a column vector of length (N*P).

1-12

step

Examples

Plot Response of ADPCA Processor with Quantized Weights

Process a radar data cube using an ADPCA processor. Weights are calculated for the 71st
cell of the data cube. Load the data cube from STAPExampleData.mat. Quantize the
weights to 4 bits. Set the look direction to (0,0) degrees and the Doppler shift to 12.980
kHz.

load STAPExampleData;
SADPCA = phased.ADPCACanceller('SensorArray',STAPEx HArray, ...
"PRF',STAPEX_PRF, ...
'PropagationSpeed',STAPEx PropagationSpeed,...
'OperatingFrequency',STAPEx OperatingFrequency,...
"NumTrainingCells', 100, ...
'WeightsOutputPort', true,...
'‘DirectionSource’, 'Input port',...
‘DopplerSource’, 'Input port',...
'"NumPhaseShifterBits',4);
[y,w] = step(sADPCA,STAPEx ReceivePulse,71,[0; 0],12.980e3);
sAngDop = phased.AngleDopplerResponse(. ..
‘SensorArray',sADPCA.SensorArray, ...
'OperatingFrequency',sADPCA.OperatingFrequency,...
"PRF',sADPCA.PRF, ...
'"PropagationSpeed',sADPCA.PropagationSpeed);
plotResponse(sAngDop,w) ;

1-13

1 Alphabetical List

«10% Angle-Doppler Response Pattern

Doppler Frequency (Hz)

-80 60 40 -20 0 20 40 60 80
Angle (degrees)

See Also
phitheta2azel | uv2azel

1-14

Power (dB)

phased.AngleDopplerResponse

phased.AngleDopplerResponse

Package: phased

Angle-Doppler response

Description

The AngleDopplerResponse object calculates the angle-Doppler response of input data.

To compute the angle-Doppler response:

1 Define and set up your angle-Doppler response calculator. See “Construction” on
page 1-15.

2 Call step to compute the angle-Doppler response of the input signal according to the
properties of phased.AngleDopplerResponse. The behavior of step is specific to
each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

H = phased.AngleDopplerResponse creates an angle-Doppler response System
object, H. This object calculates the angle-Doppler response of the input data.

H = phased.AngleDopplerResponse(Name,Value) creates angle-Doppler object, H,
with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Namel,Valuel,...,.NameN,ValueN).

1-15

1 Alphabetical List

1-16

Properties

SensorArray
Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

Default: phased.ULA with default property values
PropagationSpeed
Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You
can specify this property as single or double precision.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz. You can specify this property as single or double
precision.

Default: 3e8

PRFSource

Source of PRF values

Source of the PRF values for the STAP processor, specified as 'Property"' or 'Input
port'. When you set this property to 'Property’, the PRF is determined by the value of
the PRF property. When you set this property to 'Input port', the PRF is determined

by an input argument to the step method at execution time.

Default: 'Property'

phased.AngleDopplerResponse

PRF
Pulse repetition frequency

Specify the pulse repetition frequency (PRF) in hertz of the input signal as a positive
scalar. This property applies when you set the PRFSource property to 'Property'. You
can specify this property as single or double precision.

Default: 1
ElevationAngleSource
Source of elevation angle

Specify whether the elevation angle comes from the ElevationAngle property of this
object or from an input argument in step. Values of this property are:

'"Property' The ElevationAngle property of this object specifies
the elevation angle.

‘Input port' An input argument in each invocation of step
specifies the elevation angle.

Default: 'Property’
ElevationAngle
Elevation angle

Specify the elevation angle in degrees used to calculate the angle-Doppler response as a
scalar. The angle must be between -90 and 90. This property applies when you set the
ElevationAngleSource property to 'Property'. You can specify this property as
single or double precision.

Default: 0
NumAngleSamples
Number of samples in angular domain

Specify the number of samples in the angular domain used to calculate the angle-Doppler
response as a positive integer. This value must be greater than 2. You can specify this
property as single or double precision.

1-17

1 Alphabetical List

Default: 256

NumDopplerSamples

Number of samples in Doppler domain

Specify the number of samples in the Doppler domain used to calculate the angle-Doppler
response as a positive integer. This value must be greater than 2. You can specify this

property as single or double precision.

Default: 256

Methods
plotResponse Plot angle-Doppler response
step Calculate angle-Doppler response

Common to All System Objects

release |Allow System object property value changes

Examples

Calculate Angle-Doppler Response
Calculate the angle-Doppler response of the 190th cell of a collected data cube.

Load data cube and construct a phased.AngleDopplerResponse System object™.

load STAPExampleData;

x = shiftdim(STAPEx ReceivePulse(190,:,:));

response = phased.AngleDopplerResponse(. ..
‘SensorArray',STAPEx HArray, ...
'OperatingFrequency',STAPEx OperatingFrequency,...
'PropagationSpeed',STAPEx PropagationSpeed, ...
"PRF',STAPEX_PRF);

Plot angle-Doppler response.

1-18

phased.AngleDopplerResponse

Doppler

[resp,ang grid,dop grid] = response(x);
contour(ang grid,dop grid,abs(resp))
xLlabel('Angle')

ylabel('Doppler')

« 104

k) 1 T T T T
]

Algorithms

Response Computation

phased.AngleDopplerResponse generates the response using a conventional
beamformer and an FFT-based Doppler filter. For further details, see [1].

1-19

1 Alphabetical List

1-20

Single Precision
This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If

the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

References

[1] Guerci,]. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

phased.ADPCACanceller | phased.DPCACanceller | phased.STAPSMIBeamformer
| phitheta2azel | uv2azel

Introduced in R2012a

plotResponse

plotResponse

System object: phased.AngleDopplerResponse
Package: phased

Plot angle-Doppler response

Syntax

plotResponse(H, X)
plotResponse(H, X, ELANG)
plotResponse(H, X, PRF)
plotResponse(,Name,Value)

hPlot = plotResponse()

Description

plotResponse(H, X) plots the angle-Doppler response of the data in X in decibels. This
syntax is available when the ElevationAngleSource property is 'Property"'.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

plotResponse(H, X, ELANG) plots the angle-Doppler response calculated using the
specified elevation angle ELANG. This syntax is available when the
ElevationAngleSource property is 'Input port'.

plotResponse(H, X, PRF) plots the angle-Doppler response calculated using the
specified pulse repetition frequency PRF. This syntax is available when the PRFSource
property is 'Input port'.

plotResponse(,Name,Value) plots the angle-Doppler response with additional
options specified by one or more Name, Value pair arguments.

hPlot = plotResponse() returns the handle of the image in the figure window,
using any of the input arguments in the previous syntaxes.

1-21

1 Alphabetical List

1-22

Input Arguments

H

Angle-Doppler response object.

X

Input data.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H
PRF

Pulse repetition frequency specified as a positive scalar. To enable this argument, set the
PRFSource property to 'Input port'. Units are in Hertz.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

NormalizeDoppler

Set this value to true to normalize the Doppler frequency. Set this value to false to plot
the angle-Doppler response without normalizing the Doppler frequency.

Default: false
Unit
The unit of the plot. Valid values are 'db', 'mag', and 'pow’.

Default: 'db'

plotResponse

Examples

Plot Angle-Doppler Response
Plot the angle-Doppler response of the 190th cell of a collected data cube.

load STAPExampleData;

x = shiftdim(STAPEx ReceivePulse(190,:,:));

hadresp = phased.AngleDopplerResponse(. ..
‘SensorArray',STAPEx HArray, ...
'OperatingFrequency',STAPEx OperatingFrequency,...
'PropagationSpeed',STAPEx PropagationSpeed, ...
'"PRF',STAPEX_PRF);

plotResponse(hadresp,x, 'NormalizeDoppler', true);

1-23

1 Alphabetical List

Mormalized Doppler Frequency

1-24

=
(0

=
-l

o=

S

S
(X

o
[

S
f=4

S
o

Angle-Doppler Response Pattern

-80 60 40 -20 0 20 40 60 80
Angle (degrees)

See Also
phitheta2azel | uv2azel

-50

-60

-0

-40

-110

-120

Power (dB)

step

step

System object: phased.AngleDopplerResponse
Package: phased

Calculate angle-Doppler response

Syntax

[RESP,ANG_GRID,DOP_GRID] step(H,X)
[RESP,ANG_GRID,DOP_GRID] step(H, X, ELANG)
RESP,ANG GRID,DOP GRID = step(H,X,PRF)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

[RESP,ANG GRID,DOP GRID] = step(H,X) calculates the angle-Doppler response of
the data X. RESP is the complex angle-Doppler response. ANG GRID and DOP_GRID
provide the angle samples and Doppler samples, respectively, at which the angle-Doppler
response is evaluated. This syntax is available when the ElevationAngleSource
property is 'Property’.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

[RESP,ANG GRID,DOP GRID] = step(H,X,ELANG) calculates the angle-Doppler
response using the specified elevation angle ELANG. This syntax is available when the
ElevationAngleSource property is 'Input port'.

RESP,ANG GRID,DOP GRID = step(H,X,PRF) uses PRF as the pulse repetition
frequency. This syntax is available when the PRFSource property is ' Input port'.

1-25

1 Alphabetical List

1-26

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H

Angle-Doppler response object.

X

Input data as a matrix or column vector.

If X is a matrix, the number of rows in the matrix must equal the number of elements of
the array specified in the SensorArray property of H.

If X is a vector, the number of rows must be an integer multiple of the number of elements
of the array specified in the SensorArray property of H. In addition, the multiple must be
at least 2.

ELANG

Elevation angle in degrees. You can specify this argument as single or double precision.
Default: Value of Elevation property of H

PRF

Pulse repetition frequency specified as a positive scalar. To enable this argument, set the
PRFSource property to ' Input port'. Units are in Hertz. You can specify this
argument as single or double precision.

step

Output Arguments

RESP

Complex angle-Doppler response of X. RESP is a P-by-Q matrix. P is determined by the
NumDopplerSamples property of H and Q is determined by the NumAngleSamples
property.

ANG_GRID

Angle samples at which the angle-Doppler response is evaluated. ANG_GRID is a column
vector of length Q.

DOP_GRID

Doppler samples at which the angle-Doppler response is evaluated. DOP_GRID is a
column vector of length P.

Examples

Calculate Angle-Doppler Response
Calculate the angle-Doppler response of the 190th cell of a collected data cube.

Load data cube and construct a phased.AngleDopplerResponse System object™.

load STAPExampleData;

x = shiftdim(STAPEx ReceivePulse(190,:,:));

response = phased.AngleDopplerResponse(. ..
'SensorArray',STAPEx HArray, ...
'OperatingFrequency',STAPEx OperatingFrequency,...
'PropagationSpeed',STAPEx PropagationSpeed, ...
'"PRF',STAPEX_PRF);

Plot angle-Doppler response.

[resp,ang grid,dop grid] = response(x);
contour(ang grid,dop grid,abs(resp))
xLlabel('Angle')

ylabel('Doppler')

1-27

1 Alphabetical List

Algorithms

phased.AngleDopplerResponse generates the response using a conventional
beamformer and an FFT-based Doppler filter. For further details, see [1].

References

[1] Guerci,]. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

1-28

step

See Also
azel2phitheta | azel2uv | phitheta2azel | uv2azel

1-29

1 Alphabetical List

1-30

phased.ArrayGain

Package: phased

Sensor array gain

Description

The ArrayGain object calculates the array gain for a sensor array. The array gain on
page 1-32 is defined as the signal to noise ratio (SNR) improvement between the array
output and the individual channel input, assuming the noise is spatially white. It is related
to the array response but is not the same.

To compute the SNR gain of the antenna for specified directions:

1 Define and set up your array gain calculator. See “Construction” on page 1-30.

2 Call step to estimate the gain according to the properties of phased.ArrayGain.
The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

H = phased.ArrayGain creates an array gain System object, H. This object calculates
the array gain of a 2-element uniform linear array for specified directions.

H = phased.ArrayGain(Name,Value) creates and array-gain object, H, with the
specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

phased.ArrayGain

Properties

SensorArray
Sensor array

Sensor array specified as an array System object belonging to the phased package. A
sensor array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false

Methods

step Calculate array gain of sensor array

Common to All System Objects

release |Allow System object property value changes

Examples

1-31

1 Alphabetical List

1-32

Array Gain of 4-Element ULA

Calculate the array gain for a 4-element uniform linear array (ULA) in the direction 30°
azimuth and 20° elevation. The array operating frequency is 300 MHz.

fc = 300e6;

array = phased.ULA(4);

gain = phased.ArrayGain('SensorArray',array);
g = gain(fc,[30;20])

g = -17.1783

More About

Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement between the
array output and the individual channel input, assuming the noise is spatially white. You
can express the array gain as follows:

WHVSVHW
SNRout _ wHNw _ WHVVHW
SNRy, ~ s - H
in (N) wiw

In this equation:

* wis the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the
WeightsInputPort property to true and specifying the W argument in the step
method syntax.

* v is the steering vector representing the array response toward a given direction.
When you call the step method, the ANG argument specifies the direction.

* sis the input signal power.
* N s the noise power.
* H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array gain is the square of the
array response normalized by the number of elements in the array.

phased.ArrayGain

References

[1] Guerci,]. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Does not support arrays containing polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement antennas.

* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ArrayResponse | phased.ElementDelay | phased.SteeringVector

Introduced in R2012a

1-33

1 Alphabetical List

1-34

step

System object: phased.ArrayGain
Package: phased

Calculate array gain of sensor array

Syntax

step(H, FREQ, ANG)

step(H, FREQ, ANG,WEIGHTS)

step(H, FREQ, ANG, STEERANGLE)

step(H, FREQ, ANG,WEIGHTS, STEERANGLE)
step(H, FREQ, ANG,WS)

[N NaNaNa]
| 1 [|

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

G = step(H, FREQ, ANG) returns the array gain on page 1-38 G of the array for the
operating frequencies specified in FREQ and directions specified in ANG.

G = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on the sensor array. This
syntax is available when you set the WeightsInputPort property to true.

G = step(H,FREQ, ANG, STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor is an array that
contains subarrays, and H.Sensor.SubarraySteering is either 'Phase’ or 'Time"'.

G = step(H,FREQ, ANG,WEIGHTS, STEERANGLE) combines all input arguments. This
syntax is available when you configure H so that H.WeightsInputPort is true,
H.Sensor is an array that contains subarrays, and H.Sensor.SubarraySteering is
either 'Phase' or 'Time"'.

step

G = step(H,FREQ,ANG,WS) uses WS as weights applied to each element within each
subarray. To use this syntax, set the SensorArray property to an array that supports
subarrays and set the SubarraySteering property of the array to 'Custom'.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H
Array gain object.
FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of the sensor element. The element is
H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of array. The frequency
range property is named FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at frequencies outside that range.

ANG
Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form
[azimuth; elevation]. The azimuth angle must be between -180 and 180 degrees,
inclusive. The elevation angle must be between -90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

1-35

1 Alphabetical List

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L matrix or a column vector
of length N. N is the number of subarrays if H. SensorArray contains subarrays, or the
number of elements otherwise. L is the number of frequencies specified in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the weights at the
corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in FREQ.
STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between -180 and 180 degrees, and the elevation angle must be between -
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

WS
Subarray element weights

Subarray element weights, specified as complex-valued Ngz-by-N matrix or 1-by-N cell
array where N is the number of subarrays. These weights are applied to the individual
elements within a subarray.

1-36

step

Subarray element weights

Sensor Array

Subarray weights

phased.ReplicatedSubarray

All subarrays have the same dimensions
and sizes. Then, the subarray weights form
an Ngg-by-N matrix. Ngg is the number of
elements in each subarray and N is the
number of subarrays. Each column of WS
specifies the weights for the corresponding
subarray.

phased.PartitionedArray

Subarrays may not have the same
dimensions and sizes. In this case, you can
specify subarray weights as

* an Ng;-by-N matrix, where Ngg is now
the number of elements in the largest
subarray. The first Q entries in each
column are the element weights for the
subarray where Q is the number of
elements in the subarray.

* a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column
vectors have lengths equal to the
number of elements in the
corresponding subarray.

Dependencies

To enable this argument, set the SensorArray property to an array that contains
subarrays and set the SubarraySteering property of the array to 'Custom'.

Output Arguments

G

Gain of sensor array, in decibels. G is an M-by-L matrix. G contains the gain at the M
angles specified in ANG and the L frequencies specified in FREQ.

1-37

1 Alphabetical List

1-38

Examples

Array Gain of 6-Element ULA

Construct a uniform linear array (ULA) having six elements and operating at 1 GHz. The
array elements are spaced at one-half the operating wavelength. Find the array gain in dB
in the direction 45° azimuth and 10° elevation.

Create the phased.ArrayGain System object™.

fc = 1e9;

lambda = physconst('LightSpeed')/fc;

array = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);
gain = phased.ArrayGain('SensorArray',array);

Determine array gain at the specified operating frequency and angle.

arraygain = gain(fc,[45;10])

arraygain -17.9275

More About

Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement between the
array output and the individual channel input, assuming the noise is spatially white. You
can express the array gain as follows:

H, o H

(W vsv-w
SNRout — WHNW _ WHVVHW
SNRin (%) whw

In this equation:

* w is the vector of weights applied on the sensor array. When you use
phased.ArrayGain, you can optionally specify weights by setting the

step

WeightsInputPort property to true and specifying the W argument in the step
method syntax.

v is the steering vector representing the array response toward a given direction.
When you call the step method, the ANG argument specifies the direction.

s is the input signal power.
N is the noise power.
H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array gain is the square of the
array response normalized by the number of elements in the array.

See Also
phitheta2azel | uv2azel

1-39

1 Alphabetical List

1-40

phased.ArrayResponse

Package: phased

Sensor array response

Description

The ArrayResponse object calculates the complex-valued response of a sensor array.

To compute the response of the array for specified directions:

Define and set up your array response calculator. See “Construction” on page 1-40.

2 Call step to estimate the response according to the properties of
phased.ArrayResponse. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

H = phased.ArrayResponse creates an array response System object, H. This object
calculates the response of a sensor array for the specified directions. By default, a 2-
element uniform linear array (ULA) is used.

H = phased.ArrayResponse(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

phased.ArrayResponse

Properties

SensorArray
Handle to sensor array used to calculate response

Specify the sensor array as a handle. The sensor array must be an array object in the
phased package. The array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the corresponding input argument
when you invoke step. If you do not want to specify weights, set this property to false.

Default: false

EnablePolarization

Enable polarization simulation

Set this property to true to let the array response simulate polarization. Set this property
to false to ignore polarization. This property applies only when the array specified in the

SensorArray property is capable of simulating polarization.

Default: false

1-41

1 Alphabetical List

Methods

step Calculate array response of sensor array

Common to All System Objects

release |Allow System object property value changes

Examples

Plot Array Response

Calculate array response for a 4-element uniform linear array (ULA) in the direction of 30
degrees azimuth and 20 degrees elevation. Assume the array's operating frequency is 300
MHz.

Construct ULA and ArrayResponse System objects
fc = 300e6;

c = physconst('LightSpeed');

array = phased.ULA(4);

response = phased.ArrayResponse('SensorArray',array);
resp = response(fc,[30;20])

resp = 0.2768 + 0.00001

Plot the array response in dB

Plot the normalized power in db as an azimuth cut at 0 degrees elevation.

pattern(array,fc,[-180:180],0, 'PropagationSpeed',c, 'CoordinateSystem', 'rectangular','T

1-42

phased.ArrayResponse

MNormalized Power (dB)

Azimuth Cut (elevation angle = 0.0°)

=
-/rl
™
— "'-/I
'\-\\
-~
T
o

bbb
= = =
T T T

i

n

=
T

&
=]

-for

-200 -150 -100 -50 0 50 100 150 200
Azimuth Angle (degrees)

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-43

1 Alphabetical List

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ArrayGain | phased.ConformalArray | phased.ElementDelay |
phased.SteeringVector | phased.ULA | phased.URA

Introduced in R2011a

1-44

step

step

System object: phased.ArrayResponse
Package: phased

Calculate array response of sensor array

Syntax

RESP = step(H, FREQ, ANG)

RESP = step(H,FREQ,ANG,WEIGHTS)

RESP = step(H,FREQ,ANG, STEERANGLE)

RESP = step(H,FREQ,ANG,WEIGHTS, STEERANGLE)
RESP = step(H,FREQ, ANG,WS)
Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

RESP = step(H, FREQ,ANG) returns the array response RESP at operating frequencies
specified in FREQ and directions specified in ANG.

RESP = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on the sensor array.
This syntax is available when you set the WeightsInputPort property to true.

RESP = step(H,FREQ,ANG, STEERANGLE) uses STEERANGLE as the subarray steering
angle. This syntax is available when you configure H so that H.Sensor is an array that
contains subarrays, and H.Sensor.SubarraySteering is either 'Phase’ or 'Time"'.

RESP = step(H,FREQ,ANG,WEIGHTS, STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightsInputPort is true,

H.Sensor is an array that contains subarrays, and H.Sensor.SubarraySteering is
either 'Phase' or 'Time"'.

1-45

1 Alphabetical List

1-46

RESP = step(H,FREQ,ANG,WS) uses WS as weights applied to each element within
each subarray. To use this syntax, set the SensorArray property to an array that
supports subarrays and set the SubarraySteering property of the array to 'Custom'.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

H
Array response object.
FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of the sensor element. The element is
H.SensorArray.Element, H.SensorArray.Array.Element, or
H.SensorArray.Subarray.Element, depending on the type of array. The frequency
range property is named FrequencyRange or FrequencyVector, depending on the type
of element in the array. The element has zero response at frequencies outside that range.
The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.
If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form
[azimuth; elevation]. The azimuth angle must be between -180 and 180 degrees,

inclusive. The elevation angle must be between -90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In
this case, the corresponding elevation angle is assumed to be 0.

step

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L matrix or a column vector
of length N. N is the number of subarrays if H. SensorArray contains subarrays, or the
number of elements otherwise. L is the number of frequencies specified in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the weights at the
corresponding frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in FREQ.
STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between -180 and 180 degrees, and the elevation angle must be between -
90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

WS
Subarray element weights

Subarray element weights, specified as complex-valued Ngz-by-N matrix or 1-by-N cell
array where N is the number of subarrays. These weights are applied to the individual
elements within a subarray.

1-47

1 Alphabetical List

Subarray element weights

Sensor Array

Subarray weights

phased.ReplicatedSubarray

All subarrays have the same dimensions
and sizes. Then, the subarray weights form
an Ngg-by-N matrix. Ngg is the number of
elements in each subarray and N is the
number of subarrays. Each column of WS
specifies the weights for the corresponding
subarray.

phased.PartitionedArray

Subarrays may not have the same
dimensions and sizes. In this case, you can
specify subarray weights as

* an Ng;-by-N matrix, where Ngg is now
the number of elements in the largest
subarray. The first Q entries in each
column are the element weights for the
subarray where Q is the number of
elements in the subarray.

* a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column
vectors have lengths equal to the
number of elements in the
corresponding subarray.

Dependencies

To enable this argument, set the SensorArray property to an array that contains
subarrays and set the SubarraySteering property of the array to 'Custom'.

Output Arguments

RESP

Voltage response of the sensor array. The response depends on whether the
EnablePolarization property is set to true or false.

1-48

step

+ Ifthe EnablePolarization property is set to false, the voltage response, RESP,
has the dimensions M-by-L. M represents the number of angles specified in the input
argument ANG while L represents the number of frequencies specified in FREQ.

« Ifthe EnablePolarization property is set to true, the voltage response, RESP, is a
MATLAB® struct containing two fields, RESP.H and RESP.V. The RESP.H field
represents the array’s horizontal polarization response, while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions M-by-L. M
represents the number of angles specified in the input argument, ANG, while L
represents the number of frequencies specified in FREQ.

Examples

Array Response of ULA

Find the response of a 6-element uniform linear array operating at 1 GHz. The array
elements are spaced one-half wavelength apart. The incident signal direction is 45°
azimuth and 10° elevation. Obtain the response at this direction.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;

Create the ULA array.
array = phased.ULA('NumElements',6, 'ElementSpacing', lambda/2);
Create the array response System object™.

response = phased.ArrayResponse('SensorArray',array);
resp = response(fc,[45;10]);

See Also
phitheta2azel | uv2azel

1-49

1 Alphabetical List

backscatterBicyclist

Backscatter radar signals from bicyclist

Description

The backscatterBicyclist object simulates backscattered radar signals reflected
from a moving bicyclist. The bicyclist consists of both the bicycle and its rider. The object
models the motion of the bicyclist and computes the sum of all reflected signals from
multiple discrete scatterers on the bicyclist. The model ignores internal occlusions within
the bicyclist. The reflected signals are based on a multi-scatterer model developed from a
77 GHz radar system.

Scatterers are located on five major bicyclist components:

* Bicycle frame and rider

* Bicycle pedals

» Upper and lower legs of the rider
* Front wheel

* Back wheel

Excluding the wheels, there are 114 scatterers on the bicyclist. The wheels contain
scatterers on the rim and spokes. The number of scatterers on the wheels depends on the
number of spokes per wheel. The number of spokes is specified using the
NumWheelSpokes property.

You can obtain the current bicyclist position and velocity by calling the move object
function. Calling this function also updates the position and velocity for the next time
epoch. To obtain the reflected signal, call the reflect object function. You can plot the
instantaneous position of the bicyclist using the plot object function.

backscatterBicyclist

Creation

Syntax

bicyclist = backscatterBicyclist
bicyclist = backscatterBicyclist(Name,Value,...)

Description

bicyclist = backscatterBicyclist creates a backscatterBicyclist object,
bicyclist, having default property values.

bicyclist = backscatterBicyclist(Name,Value,...) createsa
backscatterBicyclist object, bicyclist, with each specified property Name set to
the specified Value. You can specify additional name-value pair arguments in any order
as (Namel,Valuel,...,NameN,ValueN). Any unspecified properties take default values. For
example,

bicyclist = backscatterBicyclist(...
'"NumWheelSpokes',18, 'Speed',10.0, ..
'InitialPosition',[0;0;0], 'InitialHeading',90,
‘GearTransmissionRatio',5.5);

models a bicycle with 18 spokes on each wheel that is moving along the positive y-axis at
10 meters per second. The gear transmission ratio of 5.5 indicates that there are 5.5
wheel rotations for each pedal rotation. The bicyclist is heading along the y-axis.

This figure illustrates a bicyclist starting to turn left.

1-51

1 Alphabetical List

Properties

NumWheelSpokes — Number of spokes per wheel
20 (default) | positive integer

Number of spokes per wheel of the bicycle, specified as a positive integer from 3 to 50,
inclusive.

Data Types: double

1-52

backscatterBicyclist

GearTransmissionRatio — Ratio of wheel rotations to pedal rotations
1.5 (default) | positive scalar

Ratio of wheel rotations to pedal rotations, specified as a positive scalar. The gear ratio
must be in the range from 0.5 through 6. Units are dimensionless.

Data Types: double

OperatingFrequency — Carrier frequency of narrowband signals
77€9 (default) | positive scalar

Carrier frequency of the narrowband incident signals, specified as a positive scalar. Units
are in Hz.

Example: 900e6
Data Types: double

InitialPosition — Initial position of bicyclist
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the bicyclist, specified as a 3-by-1 real-valued vector in the form of
[x;y;2] in global coordinates. Units are in meters. The initial position corresponds to the
location of the origin of the bicycle coordinates. The origin is at the center of mass of the
scatterers of the default bicyclist configuration projected onto the ground.

Data Types: double

InitialHeading — Initial heading of bicyclist
0 (default) | scalar

Initial heading of bicyclist, specified as a scalar. Heading is measured in the xy-plane from
the x-axis towards the y-axis. Heading is with respect to global coordinates. Units are in
degrees.

Data Types: double

Speed — Speed of bicyclist
4 (default) | nonnegative scalar

Speed of bicyclist, specified as a nonnegative scalar. The motion model limits the speed to
a maximum of 60 m/s (216 kph). Speed is defined with respect to global coordinates.
Units are in meters per second.

Data Types: double

1-53

1 Alphabetical List

Coast — Set bicycle coasting state
false (default) | true

Set bicycle coasting state, specified as false or true. If set to true, the bicyclist is not
pedaling, but the wheels are still rotating (freewheeling). If set to false, the bicyclist is
pedaling, and the GearTransmissionRatio determines the wheel rotations to pedal
rotations.

Data Types: logical

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
See physconst for more information.

Example: 3e8
Data Types: double

AzimuthAngles — Radar cross-section azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Radar cross-section azimuth angles, specified as a 1-by-P or P-by-1 real-valued vector.
This property defines the azimuth coordinates of each column of the radar cross-section
matrix specified by the RCSPattern property. P must be greater than two. Angle units
are in degrees.

Example: [-45:0.1:45]
Data Types: double

ElevationAngles — Radar cross-section elevation angles
0 (default) | scalar | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Radar cross-section elevation angles, specified as a 1-by-Q or Q-by-1 real-valued vector.
This property defines the elevation coordinates of each row of the radar cross-section
matrix specified by the RCSPattern property. Q must be greater than two. Angle units
are in degrees.

Example: [-30:0.1:30]
Data Types: double

backscatterBicyclist

RCSPattern — Radar cross-section pattern
1-by-361 real-valued matrix (default) | Q-by-P real-valued vector | 1-by-P real-valued
vector

Radar cross-section (RCS) pattern, specified as a Q-by-P real-valued matrix or a 1-by-P
real-valued vector. Matrix rows represent constant elevation, and columns represent
constant azimuth. Q is the length of the vector defined by the ElevationAngles
property. P is the length of the vector defined by the AzimuthAngles property. Units are
in square meters.

You can also specify the pattern as a 1-by-P real-valued vector of azimuth angles for a
single elevation.

The default value of this property is a 1-by-361 matrix containing values derived from 77
GHz radar measurements of a bicyclist. The default values of AzimuthAngles and
ElevationAngles correspond to the default RCS matrix.

Example: [1,.5;.5,1]
Data Types: double

Object Functions

Specific to This Object

getNumScatterers Number of scatterers on bicyclist

move Position, velocity, and orientation of moving bicyclist
plot Display locations of scatterers on bicyclist
reflect Reflected signal from moving bicyclist

Common to All Objects

clone Create identical object

release Release resources and allow changes to object property values and input
characteristics

reset Reset object state and property values

Examples

1-55

1 Alphabetical List

1-56

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s
away from a radar. Assume that the radar is located at the origin. The radar transmits an
LFM signal at 24 GHz with a 300-MHz bandwidth. A signal is reflected at the moment the
bicyclist starts to move and then one second later.

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and
phased.FreeSpace objects. Assume a 300 MHz sampling frequency. The initial position
of the bicyclist lies on the x-axis 30 meters from the radar.

bw = 300e6;
fs = bw;
fc = 24e9;

radarpos = [0;0;0];

bpos = [30;0;01];

bicyclist = backscatterBicyclist(
'OperatingFrequency', fc, 'NumWheelSpokes', 15,
'InitialPosition',bpos, 'Speed',5.0,
'InitialHeading',0.0);

1fmwav = phased.LinearFMWaveform(
'SampleRate’, fs,
'SweepBandwidth', bw);

sig = 1fmwav();

chan = phased.FreeSpace(...
'OperatingFrequency’, fc, ...
'SampleRate', fs, ...
'TwoWayPropagation',true);

Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the
orientation of the bicyclist. Plot the initial position of the bicyclist. The dt argument of the
move object function determines that the next call to move returns the bicyclist state of
motion dt seconds later.

dt = 1.0;
[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)

backscatterBicyclist

Bicyclist Trajectory

1.4 ~
1.2 ;:‘
* v,
1 L e
. ™
- ‘) ™ -
— 0.8 *F Ll *e Yo
é ., '™ $%a4,, "-‘.'
™
N 0.6 o* "'u'. . ® a®

Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.
N = getNumScatterers(bicyclist);

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);

[rngs,ang] = rangeangle(radarpos,bpos,bax);

y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move
the bicycle along its trajectory for another second.

1-57

1 Alphabetical List

[bpos,bvel,bax] = move(bicyclist,dt,0);

plot(bicyclist)
Bicyclist Trajectory
1.4
L]
1.2 bt 3
o,
14 ¢t .
b .
- % - o - *
— 0.8 '.'r::. ‘e e
* L™ -
n-g- ._..../.l:"l’. .= : #
N 0.6 . .. e o

Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative
reflected return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);

yl = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

1-58

backscatterBicyclist

mfsig getMatchedFilter(lfmwav);
nsamp length(mfsig);

mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 yll);

fdelay = (nsamp-1)/fs;

t = (0:size(ymf,1)-1)/fs - fdelay;

¢ = physconst('LightSpeed"');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])

xlabel('Range (m)")
ylabel('Magnitude (dB)"')

ax = axis;

axis([0,100,ax(3),ax(4)])

grid

legend('First pulse', 'Second pulse')

1-59

1 Alphabetical List

_ED T T T T T T T T T
'l-\ First pulse
| ,".,I Second pulse
I |
| |
M
-100 H— g
o AN
=2 T — T T
Jb] __-"-..-_':"::._t y f/_,_/—'/_r—'_'_ = "‘_\ ____.;-"""
= | - p
= \ L A /
o \ \
o {1y
[| |
=
-150 g
—ZDD i i i i i i i i 1

1-60

0 10 20 30 40 50 G0 70 80 90 100

Range (m)
Compute the difference in range between the maxima of the two pulses.
[maxy,idx] = max(abs(ymf));
dpeaks = t(1,idx(2)) - t(1,idx(1));
drng = c*dpeaks/2
drng = 4.9965

The range difference is 5 m, as expected given the bicyclist speed.

backscatterBicyclist

Display Micro-Doppler Shift from Moving Bicyclist

Display a spectrogram showing the micro-Doppler effect on radar signals reflected from
the scatterers on a moving bicyclist target. A stationary radar transmits 1000 pulses of an
FMCW radar wave with a bandwith of 250 MHz and of 1 usec duration. The radar
operates at 24 GHz. The bicyclist starts 5 m from the radar and moves away at 4 m/s.

Set up the waveform, channel, transmitter, receiver, and platform System objects.

bw = 250e6;
fs = 2*bw;
fc = 24e9;
¢ = physconst('Lightspeed');
tm = le-6;

wav = phased.FMCWWaveform('SampleRate',fs, 'SweepTime',tm,
'SweepBandwidth', bw);

chan = phased.FreeSpace('PropagationSpeed',c, 'OperatingFrequency', fc,
'TwoWayPropagation',true, 'SampleRate', fs);

radarplt = phased.Platform('InitialPosition',[0;0;0],
'OrientationAxesQOutputPort', true);

trx = phased.Transmitter('PeakPower',1,'Gain',25);

rcvx = phased.ReceiverPreamp('Gain',25, 'NoiseFigure',10);

Create a bicyclist object moving at 4 meters/second.

bicyclistSpeed = 4;

bicyclist = backscatterBicyclist('InitialPosition',[5;0;0], 'Speed',bicyclistSpeed,
'PropagationSpeed’,c, 'OperatingFrequency', fc, 'InitialHeading',0.0);

lambda = c/fc;

fmax = 2*bicyclist.GearTransmissionRatio*bicyclistSpeed/lambda;

tsamp = 1/(2*fmax);

Loop over 1000 pulses. Find the angle of incidence of the radar. Propagate the wave to
each scatterer, and then reflect the wave from the scatterers back to the radar.

npulse = 1000;
xr = complex(zeros(round(fs*tm),npulse));
for m = l:npulse
[posr,velr,axr] radarplt(tsamp);
[post,velt,axt] move (bicyclist, tsamp,0Q);
[~,angrt] = rangeangle(posr,post,axt);
x = trx(wav());
xt = chan(repmat(x,1l,size(post,2)),posr,post,velr,velt);
xr(:,m) = rcvx(reflect(bicyclist,xt,angrt));
end

1-61

1 Alphabetical List

Process the arriving signals. First, dechirp the signal and then pass the signal into a
Kaiser-windowed short-tme Fourier transform.

xd = conj(dechirp(xr,x));

M = 128;

beta = 6;

w = kaiser(M,beta);

R = floor(1.7%(M-1)/(beta+1));

noverlap = M - R;

[S,F,T] = stft(sum(xd),1/tsamp, 'Window',w, 'FFTLength', M*2,
'OverlapLength',noverlap);

maxval = max(10*1ogl0(abs(S)));

pcolor(T, -F*lambda/2,10*1ogl0(abs(S))-maxval);

shading flat;

colorbar

xlabel('Time (sec)')

ylabel('Speed (m/s)"')

1-62

backscatterBicyclist

Speed (m/s)

005 01 015 02 025 03 035 04 045
Time (sec)

Backscatter Bicyclist With Custom RCS Pattern

Create a custom RCS pattern to use with the backscatterBicyclist object.

The RCS pattern is computed from cosines raised to the fourth power.

az = [-180:1807;
el = [-90:90];

caz = cosd(az').”4;
cel = cosd(el).”4;
rcs = (caz*cel)';

1-63

1 Alphabetical List

imagesc(az,el, rcs)
xlabel('Azimuth (deg)"')
ylabel('Elevation (deg)"')
colorbar

Elevation (deq)

-150 100 -50 0 50 100 150
Azimuth (deg)

bicyclist = backscatterBicyclist(
"NumWheelSpokes',18, 'Speed',10.0,
'InitialPosition',[0;0;0], 'InitialHeading',90,
'GearTransmissionRatio',5.5, 'AzimuthAngles',az,
'ElevationAngles',el, 'RCSPattern',rcs);

1-64

backscatterBicyclist

Algorithms

Bicycle Model

The bicyclist consists of five primary components: bicycle frame and rider, pedals, rider
legs, front wheel, and rear wheel. Each component contains many scatterers. All
components move with a velocity determined by the specified speed and heading
properties. In addition, the legs, pedals, and wheels undergo cyclical motion determined
by the speed.

Motion of Scatterers on Frame and Rider

Scatterers on the frame and rider are fixed with respect to the bicyclist and move with
the ego velocity

Uego = vcosHi + vsinHJA'
where v is the speed of the bicyclist specified by the Speed property and H is the heading
specified by the InitialHeading property. These properties can be changed by calling

the move function.

This figure shows the location of the scatterers on the bicycle frame and rider.

1-65

1 Alphabetical List

1-66

Motion of Scatterers on Pedals

Scatterers on the pedals move with the bicyclist but can also revolve around the crank
spindle with a radius of rotation R,.4. There are two possible motions of the pedals
depending upon whether the bicycle is coasting (freewheeling) or not coasting:

* When the bicycle is coasting, the pedals do not revolve around the crank spindle and
the velocity of the pedal scatterers equals the bicyclist velocity. Their positions relative
to the bicyclist are fixed. Coasting is turned on by setting the Coast property to true
or by setting the coast argument of the move object function to true. The speed of
the pedal is

- -
U ped,tot = Vego

backscatterBicyclist

* When the bicycle is not coasting, the rider is pedaling. The angular velocity of the
pedals is related to the angular velocity of the wheels by

- -
Wywh = GWped
where G is the gear ratio defined by the GearTransmissionRatio property. The

speed of a pedal scatterer equals the rotational speed of the pedal multiplied by the
distance from pedal to crank spindle. The vector form of this relationship is:

- - -
U ped = Wped X T ped
The velocity of the pedal with respect to the bicyclist is then
- - - e - - -
U ped,tot = Wped X "ped T Vego = GWwh X T ped + Vego

Coasting is turned off by setting the Coast property to false or by setting the coast
argument of the move object function to false.

This figure shows the locations of the pedal scatterers.

1-67

1 Alphabetical List

1-68

Motion of Scatterers on Riders Legs

Scatterers on the upper and lower legs of the rider move with the bicycle with an added
cyclical motion. There are two possible motions of the legs depending upon whether the
bicycle is coasting or not coasting:

* When the bicycle is coasting, the legs are not moving with the respect to the bicycle
and the scatterers move with the velocity of the bicyclist. Coasting is turned on by
setting the Coast property to true or by setting the coast argument of the move
object function to true.

* When the bicycle is not coasting, the upper and lower legs execute reciprocating
motion. The upper legs partially rotate around the hip of the rider. The foot is attached
to the pedal and rotates with the pedal. The knee connects the lower and upper legs.

backscatterBicyclist

The locations of the foot and hips of the rider determine the locations of the knees and
the motion of the scatterers on the legs.

Coasting is turned off by setting the Coast property to false or by setting the coast
argument of the move object function to false.

This figure shows the locations of the scatterers on the upper and lower legs of the rider.

Motion of Scatterers on Bicycle Wheels

Scatterers are on the spokes and rims of the wheels and revolve around the wheel axle at
varying distances, rgy, from the axle. The velocity of the scatterers in the bicyclist frame
of reference is

1-69

1 Alphabetical List

- - -
Vspk = Wwh X " spk

The absolute velocity of a spoke or rim scatterer is
- - - -
Ugpk = Wwh X I'spk t Vego

This figure shows the locations of the scatterers on the wheel rims and spokes.

Radar Cross-Section

The value of the radar cross-section (RCS) of a scatterer generally depends upon the
incident angle of the reflected radiation. The backscatterBicyclist object uses a
simplified RCS model: the RCS pattern of an individual scatterer equals the total bicyclist

backscatterBicyclist

pattern divided by the number of scatterers. The value of the RCS is computed from the
RCS pattern evaluated at an average over all scatterers of the azimuth and elevation
incident angles. Therefore, the RCS value is the same for all scatterers. You can specify
the RCS pattern using the RCSPattern property of the backscatterBicyclist object
or use the default value.

References

[1] Stolz, M. et al. "Multi-Target Reflection Point Model of Cyclists for Automotive Radar."
2017 European Radar Conference (EURAD), Nuremberg, 2017, pp. 94-97.

[2] Chen, V., D. Tahmoush, and W. J. Miceli. Radar Micro-Doppler Signatures: Processing
and Applications. The Institution of Engineering and Technology: London, 2014.

[3] Belgiovane, D., and C. C. Chen. "Bicycles and Human Rider Backscattering at 77 GHz
for Automotive Radar." 2016 10" European Conference on Antennas and
Propagation (EuCAP), Davos, 2016, pp. 1-5.

[4] Victor Chen, The Micro-Doppler Effect in Radar. Norwood, MA: Artech House, 2011.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

backscatterPedestrian | getNumScatterers | move |
phased.BackscatterRadarTarget | phased.BackscatterSonarTarget |
phased.RadarTarget | phased.WidebandBackscatterRadarTarget | plot |
reflect

Introduced in R2019b

1-71

1 Alphabetical List

getNumScatterers

Number of scatterers on bicyclist

Syntax

N = getNumscatterers(bicyclist)

Description

N = getNumscatterers(bicyclist) returns the number of scatterers, N, on the
bicyclist.

Examples

Find Number of Bicyclist Scatterers

Use the getNumScatterers object function to find the number of scatterers on a
bicyclist with 25 spokes. Create the backscatterBicyclist object and then call
getNumScatterers.

fc = 77e9;

bicyclist = backscatterBicyclist(
'OperatingFrequency', fc, 'NumwWheelSpokes',25,
'InitialPosition',[5;0;01);
getNumScatterers(bicyclist)

=
1l

N = 359

Input Arguments

bicyclist — Bicyclist target
backscatterBicyclist object

1-72

getNumScatterers

Bicyclist, specified as a backscatterBicyclist object.

Output Arguments

N — Number of scatterers
positive integer

Number of scatterers on bicyclist, returned as a positive integer.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

move | plot | reflect

Introduced in R2019b

1-73

1 Alphabetical List

move

Position, velocity, and orientation of moving bicyclist

Syntax

[bpos,bvel, bax]
[bpos,bvel, bax]
[bpos,bvel, bax]

move(bicyclist,T,angh)
move(bicyclist,T,angh, speed)
move(bicyclist,T,angh,speed, coast)

Description

[bpos,bvel,bax] = move(bicyclist,T,angh) returns the current positions, bpos,
and current velocities, bvel, of the scatterers and the current orientation axes, bax, of
the bicyclist. The positions, velocities, and axes are then updated for the next time
interval T. angh specifies the heading angle of the bicyclist.

[bpos,bvel,bax] = move(bicyclist,T,angh,speed) also specifies the speed of
the bicyclist.

[bpos,bvel,bax] = move(bicyclist,T,angh,speed, coast) also specifies the
coasting state, coast, of the bicyclist.

Examples

Display Bicyclist Scatterer Positions
Plot the positions of all bicyclist scatterers. Assume there are 15 spokes per wheel.

Create a backscatterBicyclist object for a radar system operating at 77 GHz and
having a bandwidth of 300 MHz. The sampling rate is twice the bandwidth. The bicyclist
is initally 5 meters away from the radar.

bw
fs

300e6;
2*bw;

move

fc = 77e9;

rpos = [0;0;0];

bpos = [5;0;0];

bicyclist = backscatterBicyclist(
'OperatingFrequency', fc, 'NumwWheelSpokes', 15,
'InitialPosition',bpos);

Obtain the initial position of the scatterers and advance the motion by 1 second.
[bpos,bvel,bax] = move(bicyclist,1,0);

Obtain the number of scatterers and the indices of the wheel scatterers.

N = getNumScatterers(bicyclist);

Nsw = (N-114+1)/2;

idxfrontwheel = (114:(114 + Nsw - 1));

idxrearwheel = (114 + Nsw):N;

Plot the locations of the scatterers.

plot3(bpos(1,1:90),bpos(2,1:90),bpos(3,1:90),

'LineStyle', 'none', 'Color',[0.5,0,0], 'Marker',"'.")
axis equal
hold on
plot3(bpos(1,91:99),bpos(2,91:99),bpos(3,91:99), .
'LineStyle', 'none', 'Color',[0,0,0.7], 'Marker',"'.")
plot3(bpos(1,100:113),bpos(2,100:113),bpos(3,100:113),
'LineStyle', 'none', 'Color',[0,0,0], 'Marker',"'.")
plot3(bpos(1,idxfrontwheel),bpos(2,idxfrontwheel), bpos(3,idxfrontwheel),
'LineStyle', 'none', 'Color',[0,0.5,0], 'Marker',"'.")
plot3(bpos(1l,idxrearwheel),bpos(2,idxrearwheel) ,hbpos(3,idxrearwheel),
'LineStyle', 'none', 'Color',[0.5,0.5,0.5], '"Marker',"'.")
hold off

legend('Frame and rider', 'Pedals', 'Rider legs', 'Front wheel', 'Rear wheel')

1-75

1 Alphabetical List

* Frame and rider

* Pedals

* Riderlegs

. Front wheel
Rear wheel

Model Bicyclist Moving along Arc

Display an animation of a bicyclist riding in a quarter circle. Use the default property
values of the backscatterBicyclist object. The motion is updated at 30 millisecond
intervals for 500 steps.

dt = 0.03;

M = 500;

angstep = 90/M;

bicycle = backscatterBicyclist;

1-76

move

for m = 1:M
[bpos,bvel,bang] = move(bicycle,dt,angstep*m);
plot(bicycle)
end
Bicyclist Trajectory
L]
[]
1.4 A - ®
- il".‘..
1.2 . ')‘"'
. u".' 'ﬁ
1 4 ‘ﬁﬂ Y T
ats .
-l . B [] ..:
0.8 - PR A R L
E P ee g’ o2
- 1% '...p '-:': e
N ODB :.ﬂﬂh“.- see oot

Input Arguments

bicyclist — Bicyclist target
backscatterBicyclist ohject

Bicyclist, specified as a backscatterBicyclist object.

1-77

1 Alphabetical List

1-78

T — Duration of next motion interval
scalar

Duration of next motion interval, specified as a positive scalar. The scatterer positions and
velocities and bicyclist orientation are updated over this time duration. Units are in
seconds.

Example: 0.75
Data Types: double

angh — Bicyclist heading
0.0 | scalar

Heading of the bicyclist, specified as a scalar. Heading is measured in the xy-plane from
the x-axis towards the y-axis. Units are in degrees.

Example: -34

Data Types: double

speed — Bicyclist speed
value Speed property (default) | nonnegative scalar

Bicyclist speed, specified as a nonnegative scalar. The motion model limits the speed to 60
m/s. Units are in meters per second. Alternatively, you can specify the bicyclist speed
using the Speed property of the backscatterBicyclist object.

Example: 8
Data Types: double

coast — Set bicyclist coasting state
value of Coast property (default) | false | true

Set bicyclist coasting state, specified as false or true. If set to true, the bicyclist is not
pedaling, but the wheels are still rotating (freewheeling). If set to false, the bicyclist is
pedaling, and the GearTransmissionRatio determines the ratio of wheel rotations to
pedal rotations. Alternatively, you can specify the bicyclist coasting state using the Coast
property of the backscatterBicyclist object.

Data Types: logical

move

Output Arguments

bpos — Positions of bicyclist scatterers
real-valued 3-by-N matrix

Positions of bicyclist scatterers, returned as a real-valued 3-by-N matrix. Each column
represents the Cartesian position, [x;y;z], of one of the bicyclist scatterers. N represents
the number of scatterers and can be obtained using the getNumScatterers object
function. Units are in meters. See “Bicycle Scatterer Indices” on page 1-79 for the
column representing the position of each scatterer.

Data Types: double

bvel — Velocities of bicyclist scatterers
real-valued 3-by-N matrix

Velocities of bicyclist scatterers, returned as a real-valued 3-by-N matrix. Each column
represents the Cartesian velocity, [vx;vy;vz], of one of the bicyclist scatterers. N
represents the number of scatterers and can be obtained using the getNumScatterers
object function. Units are in meters per second. See “Bicycle Scatterer Indices” on page
1-79 for the column representing the velocity of each scatterer.

Data Types: double

bax — Orientation axes of bicyclist
real-valued 3-by-3 matrix

Orientation axes of bicyclist, returned as a real-valued 3-by-3 matrix. Units are
dimensionless.

Data Types: double

More About

Bicycle Scatterer Indices
Bicyclist scatterer indices define which columns in the scatterer position or velocity

matrices contain the position and velocity data for a specific scatterer. For example,
column 92 of bpos specifies the 3-D position of one of the scatterers on a pedal.

1-79

1 Alphabetical List

1-80

The wheel scatterers are equally divided between the wheels. You can determine the total
number of wheel scatterers, N, by subtracting 113 from the output of the
getNumScatterers function. The number of scatterers per wheel is N, = N/2.

Bicyclist Scatterer Indices

Bicyclist Component

Bicyclist Scatterer Index

Frame and rider 1...90
Pedals 91 ...99
Rider legs 100 ... 113

Front wheel

114 .. 114 + N, - 1

Rear wheel

114 + N, ... 114 + N- 1

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also

getNumScatterers | plot | reflect

Introduced in R2019b

plot

plot

Display locations of scatterers on bicyclist

Syntax

plot(bicyclist)
fhndl = plot(bicyclist)
fhndl = plot(bicyclist, 'Parent',ax)

Description

plot(bicyclist) displays the positions of all scatterers on a bicyclist at the current
time. To display the current position of the bicyclist, call the plot object function after
calling the move object function. Calling plot before any call to move displays the
bicyclist at the origin.

fhndl = plot(bicyclist) returns the figure handle of the display window.

fhndl = plot(bicyclist, 'Parent',ax) also specifies the plot axes for the bicyclist
plot.

Examples

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s
away from a radar. Assume that the radar is located at the origin. The radar transmits an
LFM signal at 24 GHz with a 300-MHz bandwidth. A signal is reflected at the moment the
bicyclist starts to move and then one second later.

1-81

1 Alphabetical List

1-82

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and
phased.FreeSpace objects. Assume a 300 MHz sampling frequency. The initial position
of the bicyclist lies on the x-axis 30 meters from the radar.

bw = 300e6;
fs = bw;
fc = 24e9;

radarpos = [0;0;0];

bpos = [30;0;0];

bicyclist = backscatterBicyclist(...
'OperatingFrequency', fc, 'NumWheelSpokes', 15,
'InitialPosition',bpos, 'Speed',5.0,
'InitialHeading',0.0);

1lfmwav = phased.LinearFMWaveform(
'SampleRate’',fs, ...
'SweepBandwidth', bw);

sig = 1fmwav();

chan = phased.FreeSpace(...
'OperatingFrequency', fc, ...
'SampleRate', fs, ...
'TwoWayPropagation', true);

Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the
orientation of the bicyclist. Plot the initial position of the bicyclist. The dt argument of the
move object function determines that the next call to move returns the bicyclist state of
motion dt seconds later.

dt = 1.0;
[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)

plot

Bicyclist Trajectory

1.4 ~
1.2 ;:‘
* v,
1 L e
. ™
- ‘) ™ -
— 0.8 *F Ll *e Yo
é ., '™ $%a4,, "-‘.'
™
N 0.6 o* "'u'. . ® a®

Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.
N = getNumScatterers(bicyclist);

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);

[rngs,ang] = rangeangle(radarpos,bpos,bax);

y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move
the bicycle along its trajectory for another second.

1-83

1 Alphabetical List

[bpos,bvel,bax] = move(bicyclist,dt,0);

plot(bicyclist)
Bicyclist Trajectory
1.4
L]
1.2 bt 3
o,
14 ¢t .
b .
- % - o - *
— 0.8 '.'r::. ‘e e
* L™ -
n-g- ._..../.l:"l’. .= : #
N 0.6 . .. e o

Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative
reflected return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);

yl = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

1-84

plot

mfsig getMatchedFilter(lfmwav);
nsamp length(mfsig);

mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 yll);

fdelay = (nsamp-1)/fs;

t = (0:size(ymf,1)-1)/fs - fdelay;

¢ = physconst('LightSpeed"');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])

xlabel('Range (m)")
ylabel('Magnitude (dB)"')

ax = axis;

axis([0,100,ax(3),ax(4)])

grid

legend('First pulse', 'Second pulse')

1-85

1 Alphabetical List

_ED T T T T T T T T T
L First pulse
| h Second pulse
I |
N
M
-100 | T 1
) AN L
S —_—
& R / /Jf T 'H\\ —
= y - ~
2 \ ‘il X/
= \ w
o \ {1y
[| |
=
150 1 -
—_ZDD i i i i i i i i i
0 10 20 30 40 50 60 70 80 90 100
Range (m)

Compute the difference in range between the maxima of the two pulses.

[maxy, idx]
dpeaks =

t(1,idx(2))

max (abs(ymf));
- t(1,1idx(1));

drng = c*dpeaks/2
drng = 4.9965

1-86

plot

The range difference is 5 m, as expected given the bicyclist speed.

Input Arguments

bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

ax — Plot axes
axes handle

Plot axes, specified as an axes handle.

Data Types: double

Output Arguments

fhndl — figure handle
figure handle

Figure handle of plot window.

See Also

getNumScatterers | move | reflect

Introduced in R2019b

1-87

1 Alphabetical List

1-88

reflect

Reflected signal from moving bicyclist

Syntax

Y = reflect(bicyclist, X, ang)

Description

Y = reflect(bicyclist, X, ang) returns the total reflected signal, Y, from a bicyclist.
The total reflected signal is the sum of all reflected signals from the bicyclist scatterers. X
represents the incident signals at each scatterer. ang defines the directions of the
incident and reflected signals with respect to the each scatterers.

The reflected signal strength depends on the value of the radar cross-section at the
incident angle. This simplified model uses the same value for all scatterers.

Examples

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s
away from a radar. Assume that the radar is located at the origin. The radar transmits an
LFM signal at 24 GHz with a 300-MHz bandwidth. A signal is reflected at the moment the
bicyclist starts to move and then one second later.

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and
phased.FreeSpace objects. Assume a 300 MHz sampling frequency. The initial position
of the bicyclist lies on the x-axis 30 meters from the radar.

bw
fs

300e6;
bw;

reflect

fc = 24e9;

radarpos = [0;0;0];

bpos = [30;0;0];

bicyclist = backscatterBicyclist(
'OperatingFrequency', fc, 'NumwWheelSpokes', 15,
'InitialPosition',bpos, 'Speed',5.0,
'InitialHeading',0.0);

lfmwav = phased.LinearFMWaveform(
'SampleRate’',fs, ...
'SweepBandwidth', bw);

sig = 1fmwav();

chan = phased.FreeSpace(...
'OperatingFrequency', fc, ...
'SampleRate’, fs, ...
'TwoWayPropagation', true);

Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the
orientation of the bicyclist. Plot the initial position of the bicyclist. The dt argument of the
move object function determines that the next call to move returns the bicyclist state of
motion dt seconds later.

dt = 1.0;

[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)

1-89

1 Alphabetical List

Bicyclist Trajectory

1.4 -

Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.
N = getNumScatterers(bicyclist);

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);

[rngs,ang] = rangeangle(radarpos,bpos,bax);

y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move
the bicycle along its trajectory for another second.

1-90

reflect

[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)

Bicyclist Trajectory

1.4

Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative
reflected return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);

yl = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

1-91

1 Alphabetical List

mfsig getMatchedFilter(lfmwav);
nsamp length(mfsig);

mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 yll);

fdelay = (nsamp-1)/fs;

t = (0:size(ymf,1)-1)/fs - fdelay;

¢ = physconst('LightSpeed"');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])

xlabel('Range (m)")
ylabel('Magnitude (dB)"')

ax = axis;

axis([0,100,ax(3),ax(4)])

grid

legend('First pulse', 'Second pulse')

1-92

reflect

Magnitude (dB)

=R0 T T T T T T T T T
'L\ First pulse
| \ Second pulse
I |
N
M
-100 F T
. I P
-:::::".?:?-t) f/'/_r—'_—_—_ T ..H\'\\ A
Aal X/
Y Illl Ill III
|)
-150 1
—_ZDD i i i i i i i i i
10 20 30 40 50 &0 70 80 90 100
Range (m)

Compute the difference in range between the maxima of the two pulses.

[maxy,idx] =

max (abs(ymf));

dpeaks = t(1,idx(2))
drng = c*dpeaks/2

drng = 4.9965

- t(1,1dx(1));

1-93

1 Alphabetical List

1-94

The range difference is 5 m, as expected given the bicyclist speed.

Input Arguments

bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

X — Incident radar signals
complex-valued M-by-N matrix

Incident radar signals on each bicyclist scatterer, specified as a complex-valued M-by-N
matrix. M is the number of samples in the signal. N is the number of point scatterers on
the bicyclist and is determined partly from the number of spokes in each wheel, N,,. See
“Bicycle Scatterer Indices” on page 1-95 for the column representing the incident signal
at each scatterer.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

Data Types: double
Complex Number Support: Yes

ang — Directions of incident signals
real-valued 2-by-P matrix

Directions of incident signals on the bicyclist scatterers, specified as a real-valued 2-by-N
matrix. N equals the number of columns in X. Each column of Ang specifies the incident
direction of the signal to a scatterer taking the form of an azimuth-elevation pair,
[AzimuthAngle;ElevationAngle]. Units are in degrees. See “Bicycle Scatterer Indices” on
page 1-95 for the column representing the incident direction at each scatterer.

Data Types: double

Output Arguments

Y — Total reflected radar signals
complex-valued M-by-1 column vector

reflect

Total reflected radar signals, returned as a complex-valued M-by-1 column vector. M
equals the number of samples in the input signal, X.

Data Types: double
Complex Number Support: Yes

More About

Bicycle Scatterer Indices

Bicyclist scatterer indices define which columns in the scatterer position or velocity
matrices contain the position and velocity data for a specific scatterer. For example,
column 92 of bpos specifies the 3-D position of one of the scatterers on a pedal.

The wheel scatterers are equally divided between the wheels. You can determine the total
number of wheel scatterers, N, by subtracting 113 from the output of the
getNumScatterers function. The number of scatterers per wheel is N, = N/2.

Bicyclist Scatterer Indices

Bicyclist Component Bicyclist Scatterer Index
Frame and rider 1...90

Pedals 91...99

Rider legs 100...113

Front wheel 114 ... 114 + N, - 1

Rear wheel 114+ N, ... 114 + N-1
Algorithms

Radar Cross-Section

The value of the radar cross-section (RCS) of a scatterer generally depends upon the
incident angle of the reflected radiation. The backscatterBicyclist object uses a
simplified RCS model: the RCS pattern of an individual scatterer equals the total bicyclist
pattern divided by the number of scatterers. The value of the RCS is computed from the
RCS pattern evaluated at an average over all scatterers of the azimuth and elevation

1-95

1 Alphabetical List

incident angles. Therefore, the RCS value is the same for all scatterers. You can specify
the RCS pattern using the RCSPattern property of the backscatterBicyclist object
or use the default value.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

getNumScatterers | move | plot

Introduced in R2019b

1-96

backscatterPedestrian

backscatterPedestrian

Backscatter radar signals from pedestrian

Description

backscatterPedestrian creates an object that simulates signals reflected from a walking
pedestrian. The pedestrian walking model coordinates the motion of 16 body segments to
simulate natural motion. The model also simulates the radar reflectivity of each body
segment. From this model, you can obtain the position and velocity of each segment and
the total backscattered radiation as the body moves.

After creating the pedestrian, you can move the pedestrian by calling the move object
function. To obtain the reflected signal, call the reflect object function. You can plot the
instantaneous position of the body segments using the plot object function.

Creation

Syntax

pedestrian = backscatterPedestrian

pedestrian = backscatterPedestrian(Name,Value,...)
Description

pedestrian = backscatterPedestrian creates a pedestrian target model object,
pedestrian. The pedestrian model includes 16 body segments - left and right feet, left
and right lower legs, left and right upper legs, left and right hip, left and right lower
arms, left and right upper arms, left and right shoulders, neck, and head.

pedestrian = backscatterPedestrian(Name,Value, ...) creates a pedestrian
object, pedestrian, with each specified property Name set to the specified Value. You
can specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN). Any unspecified properties take default values. For
example,

1-97

1 Alphabetical List

1-98

pedestrian = backscatterPedestrian(...
'Height',2, 'WalkingSpeed',0.5, ...
'InitialPosition',[0;0;0], 'InitialHeading',90);

models a two-meter tall woman or man moving along the positive y-axis at one-half meter
per second.

Properties

Height — Height of pedestrian
1.65 (default) | positive scalar

Height of pedestrian, specified as a positive scalar. Units are in meters.

Data Types: double

WalkingSpeed — Walking speed of pedestrian
1.4 times pedestrian height (default) | non-negative scalar

Walking speed of pedestrian, specified as a non-negative scalar. The motion model limits
the walking speed to 1.4 times the pedestrian height set in the Height property. Units
are in meters per second.

Data Types: double

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed"').
See physconst for more information.

Example: 3e8
Data Types: double

OperatingFrequency — Carrier frequency
300e6 (default) | positive scalar

Carrier frequency of narrowband incident signals, specified as a positive scalar. Units are
in Hz.

Example: 1e9

backscatterPedestrian

Data Types: double

InitialPosition — Initial position of pedestrian
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the pedestrian, specified as a 3-by-1 real-valued vector in the form of
[X;y;2z]. Units are in meters.

Data Types: double

InitialHeading — Initial heading of pedestrian
0 (default) | scalar

Initial heading of pedestrian, specified as a scalar. Heading is measured in the xy-plane
from the x-axis towards y-axis. Units are in degrees.

Data Types: double

Object Functions

Specific to This Object

move Position and velocity of walking pedestrian

plot Display stick figure showing the positions of all body segments of pedestrian
reflect Reflected signal from walking pedestrian

Common to All Objects

clone Create identical object

release Release resources and allow changes to object property values and input
characteristics

reset Reset object state and property values

Examples

Reflected Signal from Moving Pedestrian

Compute the reflected radar signal from a pedestrian moving along the x-axis away from
the origin. The radar operates at 24 GHz and is located at the origin. The pedestrian is

1-99

1 Alphabetical List

1-100

initially 100 meters from the radar. Transmit a linear FM waveform having a 300 MHz
bandwidth. The reflected signal is captured at the moment the pedestrian starts to move
and at two seconds into the motion.

Create a linear FM waveform and a free space channel to propagate the waveform.

¢ = physconst('Lightspeed');

bw = 300.0e6;
fs = bw;
fc = 24.0e9;

wav = phased.LinearFMWaveform('SampleRate', fs, 'SweepBandwidth', bw);

X = wav();

channel = phased.FreeSpace('OperatingFrequency', fc, 'SampleRate’', fs,
'TwoWayPropagation', true);

Create the pedestrian object. Set the initial position of the pedestrian to 100 m on the x-
axis with initial heading along the positive x-direction. The pedestrian height is 1.8 m and
the pedestrian is walking at 0.5 meters per second.

pedest = phased.BackscatterPedestrian('Height',1.8, .
'OperatingFrequency',fc, 'InitialPosition',[100;0;0],
'InitialHeading',0, 'WalkingSpeed',0.5);

The first call to the move function returns the initial position, initial velocity, and initial
orientation of all body segments and then advances the pedestrian motion two seconds
ahead.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit the first pulse to the pedestrian. Create 16 replicas of the signal and propagate
them to the positions of the pedestrian body segments. Use the rangeangle function to
compute the arrival angle of each replica at the corresponding body segment. Then use
the reflect function to return the coherent sum of all the reflected signals from the
body segments at the pedestrian initial position.

radarpos = [0;0;0];

xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);

y0 = reflect(pedest,xp,ang);

Obtain the position, velocity, and orientation of each body segment then advance the
pedestrian motion another two seconds.

[bppos,bpvel,bpax] = move(pedest,2,0);

backscatterPedestrian

Transmit and propagate the second pulse to the new position of the pedestrian.

radarpos = [0;0;0];

xp = channel(repmat(x,1,16), radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);

yl = reflect(pedest,xp,ang);

Match-filter and plot both of the reflected pulses. The plot shows the increased delay of
the matched filter output as the pedestrian walks away.

filter = phased.MatchedFilter('Coefficients',getMatchedFilter(wav));
ymf = filter([y0 yl]);

t = (0:size(ymf,1)-1)/fs;

plot(t*1le6,abs(ymf))

xlabel('Time (microsec)')

ylabel('Magnitude")

title('Match-Filtered Reflected Signals')

legend('Signal 1','Signal 2')

1-101

1 Alphabetical List

g X 1075 Match-Filtered Reflected Signals

Signal 1
Signal 2

Magnitude
Y

i ik i i i i

D i i i
0 10 20 30 40 50 G0 70 80 90 100

Time (microsec)

Zoom in and show the time delays for each signal.

plot(t*1le6,abs(ymf))

xlabel('Time (microsec)')
ylabel('Magnitude")

title('Matched-Filtered Reflected Signals')
axis([50.65 50.7 0 .0026])

legend('Signal 1','Signal 2')

1-102

backscatterPedestrian

w1073 Matched-Filtered Reflected Signals
2571 Signal 1)
Signal 2

5L i

Lst 7
=2
=
n
m
=

ik i

051 7

D 1
50.65 50.655 50.66 50.665 50.67 50.675 50.68 50.685 50.60 50.695 50.7
Time (microsec)

Plot Arm Motion of Walking Pedestrian

Create a pedestrian object. Set the initial position of the pedestrian to 100 m on the x-axis
with initial heading along the positive x-direction. The pedestrian height is 1.8 m and the
pedestrian is walking at 1.5 meters per second.

fc = 24.0e9;

pedest = phased.BackscatterPedestrian('Height',1.8, .
'OperatingFrequency',fc, 'InitialPosition',[100;0;0],
'InitialHeading',0, 'WalkingSpeed',1.5);

1-103

1 Alphabetical List

Obtain and plot the detailed motion of the right and left lower arms of the pedestrian by
capturing their positions every 1/10th of a second.

blla = zeros(3,100);

brla = blla;
t = zeros(1,100);
T=.1;

for k = 1:100
[bppos,bpvel,bpax] = move(pedest,T,0);
blla(:,k) = bppos(:,9);
brla(:,k) = bppos(:,10);
t(k) = T*(k-1);
end
plot(t,brla(l,:),t,blla(l,:))
title('Pedestrian Arm Motion')
xlabel('Time (sec)')
ylabel('Distance (m)"')
legend('Right Lower Arm','Left Lower Arm')

1-104

backscatterPedestrian

Distance {m)

Pedestrian Arm Motion

115

110

1056

100 *

10

T T T T T T T)-_,
Right Lower Arm
Left Lower Arm
L
A
::/
I /_,:-/
.--',"P
Za
/:._/_?,.
e
e
£
,»--';"{:/
,..,»‘""/
e
.--_"'.
L
4
4
0 1 2 3 4 5 6 a8 9
Time (sec)

Plot Pedestrian Motion

Display the motion of a pedestrian walking a square path. Create the pedestrian using a
phased.BackscatterPedestrian object with default values except for height which is
1.7 meters. Advance and display the pedestrian position every 3 milliseconds. First, the
pedestrian moves along the positive x-axis, then along the positive y-axis, along the
negative x-axis, and finally along the negative y-axis to return to the starting point.

ped = phased.BackscatterPedestrian('Height',1.7);

dt = 0.003;
N = 3600;

1-105

1 Alphabetical List

1-106

for

end

m= 1:N
if (m < N/4)
angstep = 0.0;
end
if (m >= N/4)
angstep = 90.0;
end
if (m >= N/2)
angstep = 180.0;
end
if (m >= 3*N/4)
angstep = 270.0;
end
move(ped,dt,angstep);
plot(ped)

backscatterPedestrian

Pedestrian Trajectory

1.2

0.8
0.6 +
0.4 -
0.2

References
[1] Victor Chen, The Micro-Doppler Effect in Radar, Artech House, 2011.
[2] Ronan Boulic, Nadia Magnenat-Thalmann, Daniel Thalmann, A Global Human Walking

Model with Real-time Kinematic Personification, The Visual Computer:
International Journal of Computer Graphics, Vol. 6, Issue 6, Dec 1990.

1-107

1 Alphabetical List

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

move | phased.BackscatterRadarTarget | phased.BackscatterSonarTarget |
phased.RadarTarget | phased.WidebandBackscatterRadarTarget | plot |
reflect

Introduced in R2019a

1-108

move

move

Position and velocity of walking pedestrian

Syntax

[BPPOS,BPVEL,BPAX] = move(pedestrian,T,ANGH)

Description

[BPPOS,BPVEL,BPAX] = move(pedestrian,T,ANGH) returns the position, BPPOS,
velocity, BPVEL, and orientation axes, BPAX, of body segments of a moving pedestrian.
The object then simulates the walking motion for the next duration, specified in T. ANGH
specifies the current heading angle.

Input Arguments

pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target model, specified as a backscatterPedestrian object.

T — Duration of next walking interval
scalar

Duration of next walking interval, specified as a positive scalar. Units are in seconds.
Example: 0.75
Data Types: double

ANGH — Pedestrian heading
scalar

Heading of the pedestrian, specified as a scalar. Heading is measured in the xy-plane from
the x-axis towards the y-axis. Units are in degrees.

1-109

1 Alphabetical List

1-110

Example: -34
Data Types: double

Output Arguments

BPPOS — Positions of body segments
real-valued 3-by-16 matrix

Positions of body segments, returned as a real-valued 3-by-16 matrix. Each column
represents the Cartesian position, [X;y; z], of one of 16 body segments. Units are in
meters. See “Body Segment Indices” on page 1-111 for the column representing the
position of each body segment.

Data Types: double

BPVEL — Velocity of body segments
real-valued 3-by-16 matrix

Velocity of body segments, returned as a real-valued 3-by-16 matrix. Each column
represents the Cartesian velocity vector, [vX;vy;vz], of one of 16 body segments. Units
are in meters per second. See “Body Segment Indices” on page 1-111 for the column
representing the velocity of each body segment.

Data Types: double

BPAX — Orientation of body segments
real-valued 3-by-3-by-16 array

Orientation axes of body segments, returned as a real-valued 3-by-3-by-16 array. Each
page represents the 3-by-3 orientation axes of one of 16 body segments. Units are
dimensionless. See “Body Segment Indices” on page 1-111 for the page representing the
orientation of each body segment.

Data Types: double

move

More About

Body Segment Indices

Body segment indices define which columns in BPPOS and BPVEL contain the position and
velocity data for a specific body segment. The indices also point to the page of BPAX
containing the orientation matrix for a specific body segment. For example, column three
of BPPOS contains the 3-D position of the left lower leg. Page three of BPAX contains the
orientation matrix of the left lower leg.

Body Segment Indices

Body segment Body segment index
left foot 1
right foot 2
left lower leg 3
right lower leg 4
left upper leg 5
right upper leg 6
left hip 7
right hip 8
left lower arm 9
right lower arm 10
left upper arm 11
right upper arm 12
left shoulder 13
right shoulder 14
neck 15
head 16

1-111

1 Alphabetical List

1-112

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

backscatterPedestrian | plot | reflect

Topics
“Reflected Signal from Moving Pedestrian” on page 1-99

Introduced in R2019a

reflect

reflect

Reflected signal from walking pedestrian

Syntax

Y = reflect(pedestrian, X, ANG)

Description

Y = reflect(pedestrian, X, ANG) returns the reflected signal, Y, from incident
signals, X, on a pedestrian. The reflected signal is the sum of signals from all body
segments. ANG defines the directions of the incident and reflected signals with respect to
the body segments.

Input Arguments

pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target model, specified as a backscatterPedestrian object.

X — Incident radar signals
complex-valued M-by-16 matrix

Incident radar signals on each body segment, specified as a complex-valued M-by-16
matrix. M is the number of samples in the signal. See “Body Segment Indices” on page 1-
114 for the column representing the incident signal at each body segment.

Data Types: double
Complex Number Support: Yes

ANG — Directions of incident signals
real-valued 2-by-16 matrix

Directions of incident signals on the body segments, specified as a real-valued 2-by-16
matrix. Each column of ANG specifies the incident direction of the signal to the

1-113

1 Alphabetical List

1-114

corresponding body part. Each column takes the form of an azimuth-elevation pair,
[AzimuthAngle;ElevationAngle]. Units are in degrees. See “Body Segment Indices”
on page 1-114 for the column representing the incident direction at each body segment.

Data Types: double

Output Arguments

Y — Combined reflected radar signals
complex-valued M-by-1 column vector

Combined reflected radar signals, returned as a complex-valued M-by-1 column vector. M
equals the same number of samples as in the input signal, X.

Data Types: double
Complex Number Support: Yes

More About

Body Segment Indices

Body segment indices define which columns in X and ANG contain the data for a specific
body segment. For example, column 3 of X contains sample data for the left lower leg.
Column 3 of ANG contains the arrival angle of the signal at the left lower leg.

reflect

Body Segment Indices

Body segment Body segment index
left foot 1
right foot 2
left lower leg 3
right lower leg 4
left upper leg 5
right upper leg 6
left hip 7
right hip 8
left lower arm 9
right lower arm 10
left upper arm 11
right upper arm 12
left shoulder 13
right shoulder 14
neck 15
head 16

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

backscatterPedestrian | move | plot

1-115

1 Alphabetical List

Topics
“Reflected Signal from Moving Pedestrian” on page 1-99

Introduced in R2019a

1-116

plot

plot

Display stick figure showing the positions of all body segments of pedestrian

Syntax

plot(pedestrian)
fhndl = plot(pedestrian)

Description

plot(pedestrian) displays a stick figure showing the positions of all body segments of
a pedestrian. The lines of the figure represent body segments while the dots represent the
joints connecting body segments.

fhndl = plot(pedestrian) returns the figure handle of the display window.

Examples

Plot Pedestrian Motion

Display the motion of a pedestrian walking a square path. Create the pedestrian using a
phased.BackscatterPedestrian object with default values except for height which is
1.7 meters. Advance and display the pedestrian position every 3 milliseconds. First, the
pedestrian moves along the positive x-axis, then along the positive y-axis, along the
negative x-axis, and finally along the negative y-axis to return to the starting point.

ped = phased.BackscatterPedestrian('Height',1.7);

dt = 0.003;
N = 3600;
for m = 1:N
if (m < N/4)
angstep = 0.0;
end

if (m >= N/4)

1-117

1 Alphabetical List

1-118

end

m—r

16
1.4
12

0.8
0.6
0.4
0.2

angstep = 90.0;
end
if (m >= N/2)
angstep = 180.0;
end
if (m >= 3*N/4)
angstep = 270.0;

end
move (ped,dt,angstep);
plot(ped)
Pedestrian Trajectory

plot

Input Arguments

pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target, specified as a backscatterPedestrian object.

Output Arguments

fhndl — figure handle
figure handle

Figure handle of plot window

See Also

backscatterPedestrian | move | reflect

Topics
“Reflected Signal from Moving Pedestrian” on page 1-99

Introduced in R2019b

1-119

1 Alphabetical List

clone

Create identical object

Syntax

object clone = clone(original object)

Description

object clone = clone(original object) creates a copy, object clone, of the
input object, original object, with identical property values.

Input Arguments

original_object — Object to be cloned
object

Object to be cloned.

Output Arguments

object_clone — Object clone
object

Object clone, returned as an object of the same class as original object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1-120

clone

Introduced in R2019a

1-121

1 Alphabetical List

1-122

reset

Reset object state and property values

Syntax

reset(obj)

Description

reset (obj) resets the internal state and input properties of the object obj.

« If obj writes or reads a file, reset resets the object to the beginning of the file.
* If obj changes properties, reset resets the properties to their initial default values.
* If obj uses a random number generation seed, reset resets the seed property.

Input Arguments

obj — Object to reset
object

Object whose state you want to reset.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2019a

release

release

Release resources and allow changes to object property values and input characteristics

Syntax

release(obj)

Description

release(obj) releases system resources such as memory, file handles, or hardware
connections, and allows you to change properties and input characteristics of obj.

Input Arguments

obj — Object to release
object

Object you want to release.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2019a

1-123

1 Alphabetical List

1-124

phased.BackscatterRadarTarget

Package: phased

Backscatter radar target

Description

The phased.BackscatterRadarTarget System object models the backscattering of a
signal from a target. Backscattering is a special case of radar target scattering when the
incident and reflected angles are the same. This type of scattering applies to monostatic
radar configurations. The radar cross-section determines the backscattering response of a
target to an incoming signal. This System object lets you specify an angle-dependent
radar cross-section model that covers a range of incident angles.

The phased.BackscatterRadarTarget System object creates a backscattered signal
for polarized and nonpolarized signals. While electromagnetic radar signals are polarized,
you can often ignore polarization in your simulation and process the signals as scalar
signals. To ignore polarization, specify the EnablePolarization property as false. To
employ polarization, specify the EnablePolarization property as true.

For nonpolarized signals, you specify the radar cross section as an array of radar cross-
section (RCS) values at discrete azimuth and elevation points. The System object
interpolates values for incident angles between array points. For polarized signals, you
specify the radar scattering matrix using three arrays defined at discrete azimuth and
elevation points. These three arrays correspond to the HH, HV, and VV polarization
components. The VH component is computed from the conjugate symmetry of the HV
component.

For both nonpolarized and polarized signal cases, you can employ one of four Swerling
models to generate random fluctuations in the RCS or radar scattering matrix. Choose the
model using the Model property. Then, use the SeedSource and Seed properties to
control the fluctuations.

EnablePolarization Use these properties

false RCSPattern

phased.BackscatterRadarTarget

EnablePolarization Use these properties
true ShhPattern, SvvPattern, and
ShvPattern

To model a backscattered radar signal:

1 Define and set up your radar target. You can set
phased.BackscatterRadarTarget System object properties at construction time
or leave them to their default values. See “Construction” on page 1-125. Some
properties that you set at construction time can be changed later. These properties
are tunable.

2 To compute the reflected signal, call the step method of
phased.BackscatterRadarTarget. The output of the method depends on the
properties of the phased.BackscatterRadarTarget System object. You can
change tunable properties at any time.

Note Starting in R2016Db, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

target = phased.BackscatterRadarTarget creates a backscatter radar target
System object, target.

target = phased.BackscatterRadarTarget(Name,Value) creates a backscatter
radar target System object, target, with each specified property Name set to the

specified Value. You can specify additional name and value pair arguments in any order
as (Namel,Valuel,...,.NameN, ValueN).

Properties

EnablePolarization — Enable polarized signals
false (default) | true

1-125

1 Alphabetical List

1-126

Option to enable processing of polarized signals, specified as false or true. Set this
property to true to allow the target to simulate the reflection of polarized radiation. Set
this property to false to ignore polarization.

Example: true

Data Types: logical

AzimuthAngles — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Azimuth angles used to define the angular coordinates of each column of the matrices
specified by the RCSPattern, ShhPattern, ShvPattern, or SvvPattern properties.
Specify the azimuth angles as a length P vector. P must be greater than two. Angle units
are in degrees.

Example: [-45:0.1:45]
Data Types: double

ElevationAngles — Elevation angles
[-90:90] (default) | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Elevation angles used to define the angular coordinates of each row of the matrices
specified by the RCSPattern, ShhPattern, ShvPattern, or SvvPattern properties.
Specify the elevation angles as a length Q vector. Q must be greater than two. Angle units
are in degrees.

Example: [-30:0.1:30]
Data Types: double

RCSPattern — Radar cross-section pattern
ones(181,361) (default) | Q-by-P real-valued matrix | Q-by-P-by-M real-valued array | 1-
by-P real-valued vector | M-by-P real-valued matrix

Radar cross-section (RCS) pattern, specified as a Q-by-P real-valued matrix or a Q-by-P-
by-M real-valued array. Q is the length of the vector in the ElevationAngles property. P
is the length of the vector in the AzimuthAngles property. M is the number of target
patterns. The number of patterns corresponds to the number of signals passed into the
step method. You can, however, use a single pattern to model multiple signals reflecting
from a single target. Pattern units are square-meters.

phased.BackscatterRadarTarget

You can also specify the pattern as a function only of azimuth for a single elevation. In this
case, specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a
separate pattern.

This property applies when the EnablePolarization property is false.
Example: [1,.5;.5,1]
Data Types: double

ShhPattern — Radar-scattering matrix HH polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-valued
array | 1-by-P complex-valued vector | M-by-P complex-valued matrix

Radar scattering matrix HH polarization component, specified as a Q-by-P complex-valued
matrix or a Q-by-P-by-M complex-valued array. Q is the length of the vector in the
ElevationAngles property. P is the length of the vector in the AzimuthAngles
property. M is the number of target patterns. The number of patterns corresponds to the
number of signals passed into the step method. You can, however, use a single pattern to
model multiple signals reflecting from a single target. Scattering matrix units are meters.

You can also specify the pattern as a function only of azimuth for a single elevation. Then,
specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a separate
pattern.

This property applies when the EnablePolarization property is true.
Example: [1,1;11,11i]

Data Types: double
Complex Number Support: Yes

SvvPattern — Radar scattering matrix VV polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-valued
array | 1-by-P complex-valued vector | M-by-P complex-valued matrix

Radar scattering matrix VV polarization component, specified as a Q-by-P complex-valued
matrix or a Q-by-P-by-M complex-valued array. Q is the length of the vector in the
ElevationAngles property. P is the length of the vector in the AzimuthAngles
property. M is the number of target patterns. The number of patterns corresponds to the
number of signals passed into the step method. You can, however, use a single pattern to
model multiple signals reflecting from a single target. Scattering matrix units are meters.

1-127

1 Alphabetical List

1-128

You can also specify the pattern as a function only of azimuth for a single elevation. In this
case, specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a
separate pattern.

This property applies when the EnablePolarization property is true.
Example: [1,1;11i,11i]

Data Types: double
Complex Number Support: Yes

ShvPattern — Radar scattering matrix HV polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-valued
array | 1-by-P complex-valued vector | M-by-P complex-valued matrix

Radar scattering matrix HV polarization component, specified as a Q-by-P complex-valued
matrix or a Q-by-P-by-M complex-valued array. Q is the length of the vector in the
ElevationAngles property. P is the length of the vector in the AzimuthAngles
property. M is the number of target patterns. The number of patterns corresponds to the
number of signals passed into the step method. You can, however, use a single pattern to
model multiple signals reflecting from a single target. Scattering matrix units are meters.

You can also specify the pattern as a function only of azimuth for a single elevation. In this
case, specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a
separate pattern.

This property applies when the EnablePolarization property is true.

Example: [1,1;11i,11]

Data Types: double

Complex Number Support: Yes

Model — Target fluctuation model
'Nonfluctuating' (default) | 'Swerlingl' | 'Swerling2' | 'Swerling3" |
'Swerling4'

Target fluctuation model, specified as 'Nonfluctuating', 'Swerlingl’,
'Swerling2', 'Swerling3', or 'Swerling4'. If you set this property to a value other
than 'Nonfluctuating', use the update input argument when calling step.

Example: 'Swerling3'

Data Types: char

phased.BackscatterRadarTarget

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
See physconst for more information.

Example: 3e8

Data Types: double

OperatingFrequency — Operating frequency

300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9

Data Types: double

SeedSource — Seed source of random number generator for RCS fluctuation
model
"Auto’ (default) | 'Property"

Seed source of random number generator for RCS fluctuation model, specified as 'Auto’
or 'Property'. When you set this property to 'Auto’, the System object generates
random numbers using the default MATLAB random number generator. When you set this
property to 'Property’, you specify the random number generator seed using the Seed
property. This property applies when you set the Model property to' Swerlingl’,
'Swerling2', 'Swerling3', or 'Swerling4'. When you use this object with Parallel
Computing Toolbox™ software, you set this property to 'Auto’.

Example: 'Property’
Data Types: char

Seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232, This
property applies when the SeedSource property is set to 'Property'.

Example: 32301
Data Types: double

1-129

1 Alphabetical List

Methods

reset Reset states of System object
step Backscatter incoming signal

Common to All System Objects

release |Allow System object property value changes

Examples

Backscatter Nonpolarized Signal

Calculate the reflected radar signal from a nonfluctuating point target with a peak RCS of

10.0 m?. Use a simplified expression of an RCS pattern of a target for illustrative
purposes. Real RCS patterns are more complicated. The RCS pattern covers a range of
angles from 10°-30° in azimuth and 5°-15° in elevation. The RCS peaks at 20° azimuth
and 10° elevation. Assume that the radar operating frequency is 1 GHz and that the
signal is a sinusoid at 1 MHz.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object, x).

Create and plot the RCS pattern.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:30.0];
elpatangs = [5.0:0.1:15.0];

rcspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
imagesc(azpatangs,elpatangs, rcspattern)

axis image

axis tight

title('RCS")

xlabel('Azimuth (deg)')

ylabel('Elevation (deg)")

1-130

phased.BackscatterRadarTarget

Elevation {deq)

10

15

10 12 14 16 18 20 22
Azimuth (deqg)

Generate and plot 50 samples of the radar signal.

foper = 1.0e9;

freq = 1.0e6;
fs = 10*freq;
nsamp = 50;

t = [0:(nsamp-1)]'/fs;

sig = sin(2*pi*freq*t);
plot(t*le6,sig)

xlabel('Time (\mu seconds)"')
ylabel('Signal Amplitude')
grid

24

26

28 30

1-131

1 Alphabetical List

0.8 | .'III I\ I,"I k’. I,"I II\ [.'II k\]

o)
(=3}
T

o o
P L=
o — —

Signal Amplitude
—_

-1
1 15 2 25 3 35
Time (i seconds)

Create the phased.BackscatterRadarTarget System object™.

target = phased.BackscatterRadarTarget('Model', 'Nonfluctuating', .
"AzimuthAngles',azpatangs, 'ElevationAngles', elpatangs, ...

'RCSPattern', rcspattern, 'OperatingFrequency', foper);

For a sequence of incident angles at constant elevation angle, find and plot the scattered

signal amplitude.

az0 = 13.0;
el = 10.0;
naz = 20;

az = az0 + [0:2:20];
naz = length(az);

1-132

phased.BackscatterRadarTarget

Scattered Signal Amplitude

ss = zeros(1,naz);

for k = 1:naz

= target(sig, [az(k);el]);

s(k) = max(abs(y));

end

plot(az,ss,'.")

xlabel('Azimuth (deg)"')
ylabel('Scattered Signal Amplitude')
grid

40 T T T

[
tn
T
-
-
-
=

(%]
=
T

[
tn
T

[
]
T

=&
tn
T

=
=
T

10 15 20 25
Azimuth (deq)

30

35

1-133

1 Alphabetical List

1-134

Backscatter Polarized Signal

Calculate the polarized radar signal scattered from a Swerling1 fluctuating point target.
Assume the target axis is rotated from the global coordinate system. Use simple
expressions for the scattering patterns for illustration. Real scattering patterns are more
complicated. For polarized signals, you need to specify the HH, HV, and VV components
of the scattering matrix for a range of incident angles. In this example, the patterns cover
the range 10°-30° in azimuth and 5°-15° in elevation. Angles are with respect to the
target local coordinate system. Assume that the radar operating frequency is 1 GHz and
that the signal is a sinusoid with a frequency of 1 MHz. The incident angle is 13.0°
azimuth and 14.0° elevation with respect to the target orientation.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object,x).

Create and plot the scattering matrix patterns.

azmax = 20.0;

elmax = 10.0;

azpatangs = [10.0:0.1:35.0];

elpatangs = [5.0:0.1:15.0];

shhpat = cosd(4*(elpatangs - elmax)) '*cosd(4*(azpatangs - azmax));
shvpat = li*cosd(4*(elpatangs - elmax)) '*sind(4*(azpatangs - azmax));
svvpat = sind(4*(elpatangs - elmax)) '*sind(4*(azpatangs - azmax));
subplot(1,3,1)

imagesc(azpatangs,elpatangs,abs(shhpat))

axis image

axis tight

title('HH")

xlabel('Azimuth (deg)"')

ylabel('Elevation (deg)")

subplot(1,3,2)

imagesc(azpatangs,elpatangs,abs(shvpat))

axis image

axis tight

title('HV")

xlabel('Azimuth (deg)"')

subplot(1,3,3)

imagesc(azpatangs,elpatangs,abs(svvpat))

axis image

axis tight

title('VV")

xlabel('Azimuth (deg)')

phased.BackscatterRadarTarget

Elevation (deg}

O —

HH HV Vv
5 5 5
O 10 10
5 15 15
10 20 30 10 20 30 10 20 30
Azimuth {deg) Azimuth (deg) Azimuth {deg)

Create the phased.BackscatterRadarTarget System object™.

target = phased.BackscatterRadarTarget('EnablePolarization', true,...
‘Model', 'Swerlingl', 'AzimuthAngles', azpatangs, ...
'ElevationAngles',elpatangs, 'ShhPattern',shhpat, 'ShvPattern',shvpat,...
'SvvPattern',svvpat);

Generate 50 samples of a polarized radar signal.

foper = 1.0e9;

freq = 1.0e6;

fs = 10*freq;

nsamp = 50;

t = [0:(nsamp-1)]"'/fs;

1-135

1 Alphabetical List

1-136

signal.X = exp(li*2*pi*freq*t);
signal.Y = exp(li*2*pi*freq*t + pi/3);
signal.Z = zeros(size(signal.X));

tgtaxes = azelaxes(60,10);
ang = [13.0;14.0];

Reflect the signal from the target and plot its components.

refl signal = target(signal,ang,tgtaxes,true);
figure

plot(t*le6,real(refl signal.X))

hold on

plot(t*le6,real(refl signal.Y))
plot(t*le6,real(refl signal.ZzZ))

hold off

xlabel('Time \mu seconds')

ylabel('Amplitude")

grid

phased.BackscatterRadarTarget

2 I"-I T T I T T T T T T 1 T T ') T
I|' '\ III \‘ I|I \ .'I \ I|'I ~I||I
| { | ' \ [|
150 | \ - [| \‘ 1
| I | | I'| II \l I|I I|
L I | I i
171 | | |I I
d | ~ |I | - { | - | | - | -
0.5 ! | ."lf ""-. |I [I."ll -'"II' \ II." " | || I."ll ‘\ |[|| I.-"I 7
i | | I f
2 xk \ | K j 1 /) ’ A
< [f ra'l ! f | L I-"ll |I I .-'f
05k v | . / I1 || \ Yy, | f _‘__ .-"'I !| || / |i| 4
|
|
At |] || | III 1
I | | | | | [f
| | | | |
15T I\ |II \ III II ||I \ III \l |II 1
| . | (.
_2 1 |.--III I 1 Illn .--III i i \-III i 1 IIL,-FII i I II| -'II
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time i seconds

More About

Backscattered Radiation
For a narrowband nonpolarized signal, the reflected signal, Y, is
Y=,G X,

where:
1-137

1 Alphabetical List

1-138

* X s the incoming signal.
* G is the target gain factor, a dimensionless quantity given by

* 0 is the mean radar cross-section (RCS) of the target.
* A is the wavelength of the incoming signal.

The incident signal on the target is scaled by the square root of the gain factor.

For narrowband polarized waves, the single scalar signal, X, is replaced by a vector
signal, (Ey, Ey), with horizontal and vertical components. The scattering matrix, S,
replaces the scalar cross-section, 0. Through the scattering matrix, the incident
horizontal and vertical polarized signals are converted into the reflected horizontal and
vertical polarized signals.

Ef;° _ [2n|SHH SvH Ef _ 4H[S] i
E%/scat) 22|Suy Syv Egnc) 22 E{}'nc)

For further details, see [1] or [2].

References

[1] Mott, H. Antennas for Radar and Communications. New York: John Wiley & Sons,
1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

phased.BackscatterRadarTarget

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

backscatterBicyclist | backscatterPedestrian |
phased.BackscatterSonarTarget | phased.RadarTarget |
phased.WidebandBackscatterRadarTarget

Topics

“Modeling Target Radar Cross Section”
“Designing a Basic Monostatic Pulse Radar”
“Swerling Target Models”

Introduced in R2016a

1-139

1 Alphabetical List

1-140

reset

System object: phased.BackscatterRadarTarget
Package: phased

Reset states of System object

Syntax

reset(sBSTgt)

Description

reset(sBSTgt) resets the internal state of the phased.BackscatterRadarTarget
object, sBSTgt. This method resets the random number generator state if SeedSource is
a property of this System object and has the value 'Property’.

Input Arguments

sBSTgt — Backscatter radar target
System object

Backscatter radar target, specified as a System object.

Example: phased.BackscatterRadarTarget

Introduced in R2016a

step

step

System object: phased.BackscatterRadarTarget
Package: phased

Backscatter incoming signal

Syntax

refl sig = step(target,sig,ang)

refl sig = step(target,sig,ang,update)

refl sig = step(target,sig,ang, laxes)

refl sig = step(target,sig,ang,laxes,update)
Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

refl sig = step(target,sig,ang) returns the reflected signal, refl sig, of an
incident nonpolarized signal, sig, arriving at the target from the angle, ang. This syntax
applies when you set the EnablePolarization property to false and the Model
property to 'Nonfluctuating'. In this case, the values specified in the RCSPattern
property are used to compute the RCS values for the incident and reflected directions,
ang.

refl sig = step(target,sig,ang,update) uses update to control whether to
update the RCS values. This syntax applies when you set the EnablePolarization
property to false and the Model property to one of the fluctuating RCS models:
'Swerlingl', 'Swerling2', 'Swerling3', or 'Swerling4'. If updateis true, a
new RCS value is generated. If update is false, the previous RCS value is used.

1-141

1 Alphabetical List

1-142

refl sig = step(target,sig,ang, laxes) returns the reflected signal, refl sig,
of an incident polarized signal, sig. The matrix, laxes, specifies the local target
coordinate system. This syntax applies when you set EnablePolarization to true and
the Model property to 'Nonfluctuating'. The values specified in the ShhPattern,
SvvPattern, and ShvPattern properties are used to compute the scattering matrices
for the incident and reflected directions, ang.

refl sig = step(target,sig,ang,laxes,update) uses the update argument to
control whether to update the scattering matrix values. This syntax applies when you set
the EnablePolarization property to true and the Model property to one of the
fluctuating RCS models: 'Swerlingl', 'Swerling2', 'Swerling3"', or 'Swerling4'.
If update is true, a new RCS value is generated. If update is false, the previous RCS
value is used.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

target — Backscatter target
System object

Backscatter target, specified as a System object.

Example: phased.BackscatterRadarTarget

sig — Narrowband signal
N-by-M complex-valued matrix | 1-by-M struct array containing complex-valued fields

* Narrowband nonpolarized signal, specified as an N-by-M complex-valued matrix.The
quantity N is the number of signal samples and M is the number of signals reflecting
off the target. Each column corresponds to an independent signal incident at a
different reflecting angle.

step

The size of the first dimension of the input matrix can vary to simulate a changing
signal length. A size change can occur, for example, in the case of a pulse waveform
with variable pulse repetition frequency.

+ Narrowband polarized signal, specified as a 1-by-M struct array containing complex-
valued fields. Each struct element contains three N-by-1 column vectors of
electromagnetic field components (sig.X,sig.Y,sig.Z) representing the polarized
signal that reflects from the target.

For polarized fields, the struct element contains three N-by-1 complex-valued
column vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z
Cartesian components of the polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to
simulate a changing signal length such as a pulse waveform with variable pulse
repetition frequency.

Example: [1,1;j,1;0.5,0]

Data Types: double
Complex Number Support: Yes

ang — Incident signal direction
2-by-1 positive real-valued column vector | 2-by-M positive real-valued column matrix

Incident signal direction, specified as a 2-by-1 positive real-valued column vector or a 2-
by-M positive real-valued column matrix. Each column of ang specifies the incident
direction of the corresponding signal in the form of an
[AzimuthAngle;ElevationAngle] pair. Units are degrees. The number of columns in
ang must match the number of independent signals in sig.

Example: [30;45]
Data Types: double

update — Update RCS
false (default) | true

Allow the RCS values for fluctuation models to update, specified as false or true. When
update is true, a new RCS value is generated with each call to the step method. If
update is false, the RCS remains unchanged with each call to step.

Example: true

Data Types: logical

1-143

1 Alphabetical List

1-144

laxes — Local coordinate matrix
eye(3,3) (default) | 3-by-3 real-valued orthonormal matrix | 3-by-3-by-M real-valued
array

Local coordinate system matrix, specified as a 3-by-3 real-valued orthonormal matrix or a
3-by-3-by-M real-valued array. The matrix columns specify the local coordinate system
orthonormal x-axis, y-axis, and z-axis, respectively. Each axis is a vector of the form (x;y;z)
with respect to the global coordinate system. When sig has only one signal, laxes is a 3-
by-3 matrix. When sig has multiple signals, you can use a single 3-by-3 matrix for
multiple signals in sig. In this case, all targets have the same local coordinate systems.
When you specify laxes as a 3-by-3-by-M MATLAB array, each page (third index) defines
a 3-by-3 local coordinate matrix for the corresponding target.

Example: [1,0,0;0,0.7071,-0.7071;0,0.7071,0.7071]
Data Types: double

Output Arguments

refl_sig — Narrowband reflected signal
N-by-M complex-valued matrix | 1-by-M struct array containing complex-valued fields

* Narrowband nonpolarized signal, specified as an N-by-M complex-valued matrix. Each
column contains an independent signal reflected from the target.

The quantity N is the number of signal samples and M is the number of signals
reflecting off the target. Each column corresponds to a reflecting angle.

» Narrowband polarized signal, specified as a 1-by-M struct array containing complex-
valued fields. Each struct element contains three N-by-1 column vectors of
electromagnetic field components (sig.X,sig.Y,sig.Z) representing the polarized
signal that reflects from the target.

For polarized fields, the struct element contains three N-by-1 complex-valued
column vectors, sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z
Cartesian components of the polarized signal.

The output refl sig contains signal samples arriving at the signal destination within
the current input time frame. When the propagation time from source to destination
exceeds the current time frame duration, the output does not contain all contributions
from the input of the current time frame. The remaining output appears in the next call to
step.

step

Examples

Backscatter Nonpolarized Signal

Calculate the reflected radar signal from a nonfluctuating point target with a peak RCS of

10.0 m2. Use a simplified expression of an RCS pattern of a target for illustrative
purposes. Real RCS patterns are more complicated. The RCS pattern covers a range of
angles from 10°-30° in azimuth and 5°-15° in elevation. The RCS peaks at 20° azimuth
and 10° elevation. Assume that the radar operating frequency is 1 GHz and that the
signal is a sinusoid at 1 MHz.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject, x).

Create and plot the RCS pattern.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:30.0];
elpatangs = [5.0:0.1:15.0];

rcspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));

imagesc(azpatangs,elpatangs, rcspattern)

axis image

axis tight

title('RCS")

xlabel('Azimuth (deg)"')
)

ylabel('Elevation (deg)"')

1-145

1 Alphabetical List

10

Elevation {deq)

15
10 12 14 16 18 20 22 24 26 28 30

Azimuth (deg)

Generate and plot 50 samples of the radar signal.

foper = 1.0e9;

freq = 1.0e6;
fs = 10*freq;
nsamp = 50;

t = [0:(nsamp-1)]'/fs;

sig = sin(2*pi*freq*t);
plot(t*le6,sig)

xlabel('Time (\mu seconds)"')
ylabel('Signal Amplitude')
grid

1-146

step

o)
(=3}
T

o (=
[gu] B
——1_

Signal Amplitude
—_

-1
1 15 2 25 3
Time (i seconds)

Create the phased.BackscatterRadarTarget System object™.

target = phased.BackscatterRadarTarget('Model"', 'Nonfluctuating"',
"AzimuthAngles',azpatangs, 'ElevationAngles', elpatangs, ...
'RCSPattern', rcspattern, 'OperatingFrequency', foper);

For a sequence of incident angles at constant elevation angle, find and plot the scattered

signal amplitude.

az0 = 13.0;
el = 10.0;
naz = 20;

az = az0 + [0:2:20];
naz = length(az);

1-147

1 Alphabetical List

Scattered Signal Amplitude

1-148

ss = zeros(1,naz);

for k = 1:naz

= target(sig, [az(k);el]);

s(k) = max(abs(y));

end

plot(az,ss,'.")

xlabel('Azimuth (deg)"')
ylabel('Scattered Signal Amplitude')
grid

40 T T

Cad
n
T
-
-
"

(%]
=
T

[
tn
T

[
]
T

=&
tn
T

=
=
T

10 15 20

25 30

Azimuth (deq)

35

step

Backscatter Polarized Signal

Calculate the polarized radar signal scattered from a Swerling1 fluctuating point target.
Assume the target axis is rotated from the global coordinate system. Use simple
expressions for the scattering patterns for illustration. Real scattering patterns are more
complicated. For polarized signals, you need to specify the HH, HV, and VV components
of the scattering matrix for a range of incident angles. In this example, the patterns cover
the range 10°-30° in azimuth and 5°-15° in elevation. Angles are with respect to the
target local coordinate system. Assume that the radar operating frequency is 1 GHz and
that the signal is a sinusoid with a frequency of 1 MHz. The incident angle is 13.0°
azimuth and 14.0° elevation with respect to the target orientation.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object,x).

Create and plot the scattering matrix patterns.

azmax = 20.0;

elmax = 10.0;

azpatangs = [10.0:0.1:35.0];

elpatangs = [5.0:0.1:15.0];

shhpat = cosd(4*(elpatangs - elmax)) '*cosd(4*(azpatangs - azmax));
shvpat = li*cosd(4*(elpatangs - elmax)) '*sind(4*(azpatangs - azmax));
svvpat = sind(4*(elpatangs - elmax)) '*sind(4*(azpatangs - azmax));
subplot(1,3,1)

imagesc(azpatangs,elpatangs,abs(shhpat))

axis image

axis tight

title('HH")

xlabel('Azimuth (deg)"')

ylabel('Elevation (deg)")

subplot(1,3,2)

imagesc(azpatangs,elpatangs,abs(shvpat))

axis image

axis tight

title('HV")

xlabel('Azimuth (deg)"')

subplot(1,3,3)

imagesc(azpatangs,elpatangs,abs(svvpat))

axis image

axis tight

title('VV")

xlabel('Azimuth (deg)')

1-149

1 Alphabetical List

° HH HV v

- 5 5 5

510 10 10

o

w15 15 15

o 10 20 30 10 20 30 10 20 30
Azimuth {deg) Azimuth (deg) Azimuth {deg)

Create the phased.BackscatterRadarTarget System object™.

target = phased.BackscatterRadarTarget('EnablePolarization', true,...
‘Model', 'Swerlingl', 'AzimuthAngles', azpatangs, ...

'ElevationAngles',elpatangs, 'ShhPattern',shhpat, 'ShvPattern',shvpat,...

'SvvPattern',svvpat);

Generate 50 samples of a polarized radar signal.

foper = 1.0e9;

freq = 1.0e6;

fs = 10*freq;

nsamp = 50;

t = [0:(nsamp-1)]"'/fs;

1-150

step

signal.X = exp(li*2*pi*freq*t);
signal.Y = exp(li*2*pi*freq*t + pi/3);
signal.Z = zeros(size(signal.X));

tgtaxes = azelaxes(60,10);
ang = [13.0;14.0];

Reflect the signal from the target and plot its components.

refl signal = target(signal,ang,tgtaxes,true);
figure

plot(t*le6,real(refl signal.X))

hold on

plot(t*le6,real(refl signal.Y))
plot(t*le6,real(refl signal.ZzZ))

hold off

xlabel('Time \mu seconds')

ylabel('Amplitude")

grid

1-151

1 Alphabetical List

2 II "-I T T] T T T T T II-I T T Il T
| \ f \ ; H [ﬁw
/ | [| i
1.5 ||I | | \ I|| I | i f \‘
. L | H f \ |
L f i
1H II | | |
N - .I | - | | | |
s /NN N VN VN VA
da ! [|/ | { A |/ A
_g ."k i K j f ’ IuI
= L / { , / / i
o A ATA A A
< . N f l { | L / \ /
asp /Y NAY Y Y NAY
-1F | || | || Il I _
| |I l |I | f f I|'
18l | II| \ II| |I I|| \ II| \I III |
\ f III I|I \ III || \
g I |.--'I | I | d | IL-AI I | III -'I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time i seconds

See Also
phased.RadarTarget | phased.WidebandBackscatterRadarTarget

Introduced in R2016a

1-152

phased.BackscatterSonarTarget

phased.BackscatterSonarTarget

Package: phased

Sonar target backscatter

Description

The phased.BackscatterSonarTarget System object models the backscattering of a
signal from an underwater or surface target. Backscattering is a special case of sonar
target scattering when the incident and reflected angles are the same. This type of
scattering applies to monostatic sonar configurations. The sonar target strength (TS)
determines the backscattering response of a target to an incoming signal. This object lets
you specify an angle-dependent sonar target strength model that covers a range of
incident angles.

The object lets you specify the target strength as an array of values at discrete azimuth
and elevation points. The object interpolates values for incident angles between array
points.

You can employ one of four Swerling models to generate random fluctuations in the target
strength. Choose the fluctuation model using the Model property. Then, use the
SeedSource and Seed properties to control the fluctuations.

To model a backscattered reflected sonar signal:

1 Define and set up your sonar target. You can set
phased.BackscatterSonarTarget System object properties at construction time
or leave them to their default values. See “Construction” on page 1-154. Some
properties that you set at construction time can be changed later. These properties
are tunable.

2 To compute the reflected signal, call the step method of
phased.BackscatterSonarTarget. The output of the method depends on the
properties of the phased.BackscatterSonarTarget System object. You can
change tunable properties at any time.

1-153

1 Alphabetical List

1-154

Note Instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) andy = obj(x) perform equivalent operations.

Construction

target = phased.BackscatterSonarTarget creates a backscatter sonar target
System object, target.

target = phased.BackscatterSonarTarget (Name,Value) creates a backscatter
sonar target System object, target, with each specified property Name set to the
specified Value. You can specify additional name and value pair arguments in any order
as (Namel,Valuel,...,NameN, ValueN).

Properties

AzimuthAngles — Target strength azimuth angles
[-180:180] (default) | real-valued 1-by-P row vector | real-valued P-by-1 column vector

Target strength azimuth angles, specified as a real-valued 1-by-P row vector or P-by-1
column vector. These angles define the azimuth coordinates of each column of the matrix
specified by the TSPattern property. P must be greater than two. Angle units are in
degrees.

Example: [-45:0.1:45]
Data Types: double

ElevationAngles — Elevation angles
[-90:90] (default) | real-valued 1-by-Q row vector | real-valued Q-by-1 column vector

Target strength elevation angles, specified as a real-valued 1-by-Q row vector or Q-by-1
column vector. These angles define the elevation coordinates of each row of the matrix
specified by the TSPattern property. Q must be greater than two. Angle units are in
degrees.

Example: [-30:0.1:30]
Data Types: double

phased.BackscatterSonarTarget

TSPattern — Sonar target strength pattern
zeros(181,361) (default) | Q-by-P real-valued matrix | Q-by-P-by-M real-valued array |
1-by-P real-valued vector | M-by-P real-valued matrix

Sonar target strength (TS) pattern, specified as a real-valued Q-by-P matrix or Q-by-P-by-
M array. Q is the length of the vector in the ElevationAngles property. P is the length
of the vector in the AzimuthAngles property. M is the number of target patterns. The
number of patterns corresponds to the number of signals passed into the step method.
You can, however, use a single pattern to model multiple signals reflecting from a single
target. Pattern units are dB.

You can also specify the pattern as a function only of azimuth for a single elevation. In this
case, specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a
separate pattern.

Example: [1,2;3,4]
Data Types: double

Model — Target fluctuation model
'"Nonfluctuating' (default) | 'Swerlingl' | 'Swerling2' | 'Swerling3" |
'Swerling4'

Target fluctuation model, specified as 'Nonfluctuating', 'Swerlingl’,
'Swerling2', 'Swerling3', or 'Swerling4'. If you set this property to a value other
than 'Nonfluctuating', use the update input argument when calling the step
method.

Example: 'Swerling3'

Data Types: char

SeedSource — Seed source of random number generator for TS fluctuation
model
"Auto’ (default) | 'Property'

Seed source of random number generator for TS fluctuation model, specified as 'Auto'
or 'Property'. When you set this property to 'Auto’', the System object generates
random numbers using the default MATLAB random number generator. When you set this
property to 'Property', you specify the random number generator seed using the Seed
property. This property applies when you set the Model property to'Swerlingl',
'Swerling2', 'Swerling3', or 'Swerling4'. When you use this object with Parallel
Computing Toolbox software, you set this property to 'Auto’.

1-155

1 Alphabetical List

1-156

Example: 'Property’
Data Types: char

Seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 32301

Dependencies

To enable this property, set the SeedSource property to 'Property"’.
Data Types: double

Methods

reset Reset states of System object
step Backscatter incoming sonar signal

Common to All System Objects

release |Allow System object property value changes

Examples

Backscatter Sonar Signal from Nonfluctuating Target

Calculate the reflected sonar signal from a nonfluctuating point target with a peak target
strength (TS) of 10.0 db. For illustrative purposes, use a simplified expression for the TS
pattern of a target. Real TS patterns are more complicated. The TS pattern covers a
range of angles from 10° to 30° in azimuth and from 5° to 15° in elevation. The TS peaks
at 20° azimuth and 10° elevation. Assume that the sonar operating frequency is 10 kHz
and that the signal is a sinusoid at 9500 kHz.

Create and plot the TS pattern.

phased.BackscatterSonarTarget

azmax = 20.0;

elmax = 10.0;

azpatangs [10.0:0.1:35.0];

elpatangs [5.0:0.1:15.0];

tspattern 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*1logl0O(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar

axis image

axis tight

title('TS")

xlabel('Azimuth (deg)"')
ylabel('Elevation (deg)"')

Elevation (deg)

10 15 20 25 30 35
Azimuth (deg)

1-157

1 Alphabetical List

Generate and plot 50 samples of the sonar signal.

freq = 9.5e3;
fs = 100*freq;
nsamp = 500;

t = [0:(nsamp-1)]'/fs;

sig = sin(2*pi*freq*t);
plot(t*1le6,sig)

xlabel('Time (\mu seconds)")
ylabel('Signal Amplitude')

grid
08T |II II'| |II \ |'I III |II \ I'I III]
|| | | | || |
0.6 ‘|| |I l[II || |I || |I II || 4
oo {1 L _

02f | o P f H f H i

Signal Amplitude
—_

0.2F | |
| ’ | L

0.4F || | || I| |I II I| I| II || i

06 '| I'l \ f I| III I|I I|I I|I |I 1
| |

0s8f l'lI Ir'l \ I.‘l ||II | lll | 'lII |]

-1 I\u'll I IIII. :'II I I\a'lln ll'.'ll Il'u.l'll
0 100 200 300 400 500 600

Time (i seconds)

Create the phased.BackscatterSonarTarget System object™.

1-158

phased.BackscatterSonarTarget

target = phased.BackscatterSonarTarget('Model"', 'Nonfluctuating"',
"AzimuthAngles',azpatangs, 'ElevationAngles',elpatangs,
'TSPattern',tspattern);

For a sequence of different azimuth incident angles (at constant elevation angle), plot the
maximum scattered signal amplitude.

az0 = 13.0;
el = 10.0;
naz = 20;

az = az0 + [0:1:20];

naz = length(az);

ss = zeros(1,naz);

for k = 1:naz

= target(sig, [az(k);el]);
s(k) = max(abs(y));

end

plot(az,ss,'0o")

xlabel('Azimuth (deg)')
ylabel('Backscattered Signal Amplitude')
grid

1-159

1 Alphabetical List

Backscattered Signal Amplitude

1-160

3.2

227

O

O

(]
bt

C

(]
bt

O

O

fea
]
iy
Yy

O

o

O

O

(]
bt

iy
bt

o

O

O

O

10

15

20 25
Azimuth (deg)

Backscatter Sonar Signal from Fluctuating Target

30

35

Calculate the reflected sonar signal from a Swerling?2 fluctuating point target with a peak
target strength (TS) of 10.0 db. For illustrative purposes, use a simplified expression for
the TS pattern of a target. Real TS patterns are more complicated. The TS pattern covers
a range of angles from 10°to 30° in azimuth and from 5° ro 15° in elevation. The TS peaks
at 20° azimuth and 10° elevation. Assume that the sonar operating frequency is 10 kHz
and that the signal is a sinusoid at 9500 kHz.

Create and plot the TS pattern.

phased.BackscatterSonarTarget

azmax = 20.0;

elmax = 10.0;

azpatangs [10.0:0.1:35.0];

elpatangs [5.0:0.1:15.0];

tspattern 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*1logl0O(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar

axis image

axis tight

title('TS")

xlabel('Azimuth (deg)"')
ylabel('Elevation (deg)"')

Elevation (deg)

10 15 20 25 30 35
Azimuth (deg)

1-161

1 Alphabetical List

Generate the sonar signal.

freq = 9.5e3;

fs = 10*freq;

nsamp = 50;

t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);

Create the phased.BackscatterSonarTarget System object™.

target = phased.BackscatterSonarTarget('Model', 'Nonfluctuating', ...

"AzimuthAngles',azpatangs, 'ElevationAngles’',elpatangs, ...
'TSPattern',tspattern, 'Model', 'Swerling2');

Compute and plot the fluctuating signal amplitude for 20 time steps.

az = 20.0;

el = 10.0;

nsteps = 20;

ss = zeros(1l,nsteps);

for k = l:nsteps
y = target(sig,[az;el],true);
ss(k) = max(abs(y));

end

plot([0:(nsteps-1)]*1000/fs,ss,'0")
xlabel('Time (msec)"')
ylabel('Backscattered Signal Amplitude")
grid

1-162

phased.BackscatterSonarTarget

Backscattered Signal Amplitude
+a
n

e
n
T
O
']
i
1

DS i i i i i i i i i

[l
o

Y
T
0
0
1

e
on
T
[}
I

[
T
0
iy
1

ra
o
T
(]
™
I

M
T
1

O
(]

]
iy
0

(&)
-

0 002 004 006 008 01 012 014 016 018 02
Time (msec)

More About

Backscattered Sound Radiation

For narrowband acoustic signals, the reflected signal, Y, is given by
Y =G X,

where

1-163

1 Alphabetical List

* X s the incoming signal.

+ G is the target gain factor given by 10710 where TS is the target strength in dB.
Specify target strength using the TSPattern property.

For a more detailed explanation of target strength, see “[1] [2]” on page 1-164.

References

[1] Urick, R.]. Principles of Underwater Sound, 3rd Edition. New York: Peninsula
Publishing, 1996.

[2] Sherman, C.S. and].Butler Transducers and Arrays for Underwater Sound. New York:
Springer, 2007.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

System Objects

backscatterBicyclist | backscatterPedestrian |
phased.BackscatterRadarTarget | phased.IsoSpeedUnderwaterPaths |
phased.RadarTarget | phased.WidebandBackscatterRadarTarget

Topics

“Underwater Target Detection with an Active Sonar System”
“Locating an Acoustic Beacon with a Passive Sonar System”
“Swerling Target Models”

1-164

phased.BackscatterSonarTarget

Introduced in R2017a

1-165

1 Alphabetical List

1-166

reset

System object: phased.BackscatterSonarTarget
Package: phased

Reset states of System object

Syntax

reset(target)

Description

reset(target) resets the internal state of the phased.BackscatterSonarTarget
object, target. This method resets the random number generator state if SeedSource is
a property of this System object and has the value 'Property’.

Input Arguments

target — Backscatter sonar target
phased.BackscatterSonarTarget System object

Backscatter sonar target, specified as a phased.BackscatterSonarTarget System
object.

Example: phased.BackscatterSonarTarget

Introduced in R2017a

step

step

System object: phased.BackscatterSonarTarget
Package: phased

Backscatter incoming sonar signal

Syntax

refl sig = step(target,sig,ang)

refl sig = step(target,sig,ang,update)
Description

Note Instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) andy = obj(x) perform equivalent operations.

refl sig = step(target,sig,ang) returns the reflected signal, refl sig, of an
incident sonar signal, sig, arriving at the target from the angle, ang.

refl sig = step(target,sig,ang,update) uses update to control whether to
update the target strength (TS) values. This syntax applies when you set the Model
property to one of the fluctuating TS models: 'Swerlingl', 'Swerling2’,
'Swerling3', or 'Swerling4'. If update is true, a new TS value is generated. If
update is false, the previous TS value is used.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

1-167

1 Alphabetical List

Input Arguments

target — Backscatter sonar target
phased.BackscatterSonarTarget System object

Backscatter sonar target, specified as a phased.BackscatterSonarTarget System
object.

sig — Sonar signal
N-by-M complex-valued matrix

Sonar signal, specified as an N-by-M complex-valued matrix. The quantity N is the
number of signal samples and M is the number of signals reflecting off the target. Each
column corresponds to an independent signal incident at a different reflecting angle.

When you specify the TSPattern property as a Q-by-P-by-M, a separate pattern is used
for each signal. When you specify TSPattern as a Q-by-Pmatrix, the same pattern is used
for every signal.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

ang — Incident signal direction
2-by-1 positive real-valued column vector | 2-by-M positive real-valued column matrix

Incident signal direction, specified as a 2-by-1 positive real-valued column vector or a 2-
by-M positive real-valued column matrix. Each column of ang specifies the incident
direction of the corresponding signal in the form of an
[AzimuthAngle;ElevationAngle] pair. Units are degrees. The number of columns in
ang must match the number of independent signals in sig.

Example: [30;45]
Data Types: double

update — Update target strength
false (default) | true

1-168

step

Allow the TS values for fluctuation models to update, specified as false or true. When
update is true, a new TS value is generated with each call to the step method. If
update is false, TS remains unchanged with each call to step.

Example: true

Data Types: logical

Output Arguments

refl_sig — Narrowband reflected sonar signal
N-by-M complex-valued matrix

Narrowband reflected sonar signal, specified as an N-by-M complex-valued matrix. Each
column contains an independent signal reflected from the target.

The quantity N is the number of signal samples and M is the number of signals reflecting
off the target. Each column corresponds to a reflecting angle.

The output refl _sig contains signal samples arriving at the signal destination within
the current input time frame. When the propagation time from source to destination
exceeds the current time frame duration, the output will not contain all contributions
from the input of the current time frame. The remaining output appears in the next call to
step.

Examples

Backscatter Sonar Signal from Nonfluctuating Target

Calculate the reflected sonar signal from a nonfluctuating point target with a peak target
strength (TS) of 10.0 db. For illustrative purposes, use a simplified expression for the TS
pattern of a target. Real TS patterns are more complicated. The TS pattern covers a
range of angles from 10° to 30° in azimuth and from 5° to 15° in elevation. The TS peaks
at 20° azimuth and 10° elevation. Assume that the sonar operating frequency is 10 kHz
and that the signal is a sinusoid at 9500 kHz.

Create and plot the TS pattern.

azmax
elmax

20.0;
10.0;

1-169

1 Alphabetical List

azpatangs = [10.0:0.1:35.0];
elpatangs = [5.0:0.1:15.0];
tspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));

tspatterndb = 10*1logl0O(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar

axis image

axis tight

title('TS")

xlabel('Azimuth (deg)"')
ylabel('Elevation (deg)"')

TS
5 T

D

=

|

S 10

5

B

L

15 - 4

20 25 30 35
Azimuth (deg)

Generate and plot 50 samples of the sonar signal.

1-170

step

Signal Amplitude

freq = 9.5e3;
fs = 100*freq;
nsamp = 500;

t = [0:(nsamp-1)]"'/fs;

sig = sin(2*pi*freq*t);
plot(t*1le6,sig)

xLlabel('Time (\mu seconds)"')
ylabel('Signal Amplitude")
grid

0.8 F III III I| |I II |I II| \ II |I |
0.6 [| [[| I | | _
04 | - L b | .

1] I

|

f |I f { [\ |
II\.I'I i I'..-'I i l\.n'll II':.'II I'u.'II
0 100 200 300 400 500 GO0
Time (i seconds)

Create the phased.BackscatterSonarTarget System object™.

1-171

1 Alphabetical List

target = phased.BackscatterSonarTarget('Model"', 'Nonfluctuating"',
"AzimuthAngles',azpatangs, 'ElevationAngles',elpatangs,
'TSPattern',tspattern);

For a sequence of different azimuth incident angles (at constant elevation angle), plot the
maximum scattered signal amplitude.

az0 = 13.0;
el = 10.0;
naz = 20;

az = az0 + [0:1:20];

naz = length(az);

ss = zeros(1,naz);

for k = 1:naz

= target(sig, [az(k);el]);
s(k) = max(abs(y));

end

plot(az,ss,'0o")

xlabel('Azimuth (deg)')
ylabel('Backscattered Signal Amplitude')
grid

1-172

step

Backscattered Signal Amplitude

3.2

227

O

O

C

(]
bt

(]
bt

O

O

fea
]
iy
Yy

O

o

O

O

(]
bt

iy
bt

o

O

O

O

10

15

20 25
Azimuth (deg)

Backscatter Sonar Signal from Fluctuating Target

30

35

Calculate the reflected sonar signal from a Swerling?2 fluctuating point target with a peak
target strength (TS) of 10.0 db. For illustrative purposes, use a simplified expression for
the TS pattern of a target. Real TS patterns are more complicated. The TS pattern covers
a range of angles from 10°to 30° in azimuth and from 5° ro 15° in elevation. The TS peaks
at 20° azimuth and 10° elevation. Assume that the sonar operating frequency is 10 kHz
and that the signal is a sinusoid at 9500 kHz.

Create and plot the TS pattern.

1-173

1 Alphabetical List

azmax = 20.0;

elmax = 10.0;

azpatangs [10.0:0.1:35.0];

elpatangs [5.0:0.1:15.0];

tspattern 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*1logl0O(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar

axis image

axis tight

title('TS")

xlabel('Azimuth (deg)"')
ylabel('Elevation (deg)"')

T

Elevation (deg)

T

10 15 20 25 30 35
Azimuth (deg)

1-174

step

Generate the sonar signal.

freq = 9.5e3;

fs = 10*freq;

nsamp = 50;

t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);

Create the phased.BackscatterSonarTarget System object™.

target = phased.BackscatterSonarTarget('Model', 'Nonfluctuating', ...
"AzimuthAngles',azpatangs, 'ElevationAngles’',elpatangs, ...
'TSPattern',tspattern, 'Model', 'Swerling2');

Compute and plot the fluctuating signal amplitude for 20 time steps.

az = 20.0;

el = 10.0;

nsteps = 20;

ss = zeros(1l,nsteps);

for k = l:nsteps
y = target(sig,[az;el],true);
ss(k) = max(abs(y));

end

plot([0:(nsteps-1)]*1000/fs,ss,'0")

xlabel('Time (msec)"')

ylabel('Backscattered Signal Amplitude")

grid

1-175

1 Alphabetical List

5.5

o
R n

e
o

ra
o

Backscattered Signal Amplitude
2 L

=
tn

0.5

0

0.02 0.04 006

Introduced in R2017a

1-176

0.08 01 012
Time (msec)

0.14

0.16

0.18

0.2

phased.BarrageJammer

phased.BarrageJammer

Package: phased

Barrage jammer

Description

The BarrageJammer object implements a white Gaussian noise jammer.

To obtain the jamming signal:

1 Define and set up your barrage jammer. See “Construction” on page 1-177.

2 Call step to compute the jammer output according to the properties of
phased.BarrageJammer. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

H = phased.BarrageJammer creates a barrage jammer System object, H. This object
generates a complex white Gaussian noise jamming signal.

H = phased.BarrageJammer(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

H = phased.BarrageJammer(E,Name,Value) creates a barrage jammer object, H,

with the ERP property set to E and other specified property Names set to the specified
Values.

1-177

1 Alphabetical List

Properties
ERP
Effective radiated power

Specify the effective radiated power (ERP) (in watts) of the jamming signal as a positive
scalar.

Default: 5000
SamplesPerFrameSource
Source of number of samples per frame

Specify whether the number of samples of the jamming signal comes from the
SamplesPerFrame property of this object or from an input argument in step. Values of

this property are:
'Property' The SamplesPerFrame property of this object
specifies the number of samples of the jamming signal.
"Input port' An input argument in each invocation of step
specifies the number of samples of the jamming signal.

Default: 'Property'
SamplesPerFrame
Number of samples per frame

Specify the number of samples in the output jamming signal as a positive integer. This
property applies when you set the SamplesPerFrameSource property to 'Property'.

Default: 100
SeedSource
Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

1-178

phased.BarrageJammer

"Auto’ The default MATLAB random number generator produces
the random numbers. Use 'Auto’ if you are using this
object with Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use 'Property' if you want repeatable results and are not
using this object with Parallel Computing Toolbox software.

Default: 'Auto’
Seed
Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232-
1. This property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

reset Reset random number generator for noise generation
step Generate noise jamming signal

Common to All System Objects

release |Allow System object property value changes

Examples

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the
magnitude of the jammer output. Your plot might vary because of random numbers.

1-179

1 Alphabetical List

Hjammer = phased.BarrageJammer('ERP',1000);
x = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

a0 T T T T T T T T T

80

-
jau]
T

n =]
] o
T T
—
T
i

.
-
T

Magnitude

(%]
=
—
J—
——
—
e T
—
—

s
]
T
—
——

10} lv r JI |v| | U |

0 10 20 30 40 50 60 70 80 90 100
Samples

References

[1] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,”
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

1-180

phased.BarrageJammer

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.Platform | phased.RadarTarget

Introduced in R2012a

1-181

1 Alphabetical List

reset

System object: phased.BarrageJammer
Package: phased

Reset random number generator for noise generation

Syntax

reset(H)

Description

reset (H) resets the states of the BarrageJammer object, H. This method resets the
random number generator state if the SeedSource property is set to 'Property"'.

1-182

step

step

System object: phased.BarrageJammer
Package: phased

Generate noise jamming signal

Syntax

Y
Y

step(H)
step(H,N)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Y = step(H) returns a column vector, Y, that is a complex white Gaussian noise
jamming signal. The power of the jamming signal is specified by the ERP property. The
length of the jamming signal is specified by the SamplesPerFrame property. This syntax
is available when the SamplesPerFrameSource property is 'Property'.

Y = step(H,N) returns the jamming signal with length N. This syntax is available when
the SamplesPerFrameSource property is 'Input port'.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

1-183

1 Alphabetical List

Examples

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the
magnitude of the jammer output. Your plot might vary because of random numbers.

Hjammer = phased.BarrageJammer('ERP',1000);
x = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

a0 T T T T T T T T T

-]
o
T

=2}
—_
T
—_—
1

n

-
T
i

B
=]
T

Magnitude

M\

Cad
]
—

3

=]

T

———
e —

10 | lv |r'| JI |v| . - |

0 10 20 30 40 50 G0 70 80 80 100
Samples

1-184

phased.BeamscanEstimator

phased.BeamscanEstimator

Package: phased

Beamscan spatial spectrum estimator for ULA

Description

The phased.BeamscanEstimator System object calculates a beamscan spatial
spectrum estimate for a uniform linear array (ULA). The object estimates the incoming
signal spatial spectrum using a narrowband conventional beamformer.

To estimate the spatial spectrum:

1 Create the phased.BeamscanEstimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

estimator = phased.BeamscanEstimator
estimator phased.BeamscanEstimator(Name,Value)

Description

estimator = phased.BeamscanEstimator creates a beamscan spatial spectrum
estimator System object.

estimator = phased.BeamscanEstimator(Name,Value) creates an object,
estimator, with each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN).

1-185

1 Alphabetical List

1-186

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SensorArray — ULA sensor array
phased.ULA System object (default)

ULA sensor array, specified as a phased.ULA System object. If you do not specify any
name-value pair properties for the ULA sensor array, the default properties of the array
are used.

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters
per second. The default propagation speed is the value returned by
physconst('LightSpeed').

Example: 3e8
Data Types: single | double

OperatingFrequency — Operating frequency

300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9

Data Types: single | double

NumPhaseShifterBits — Number of phase shifter quantization bits
0 (default) | non-negative scalar

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights, specified as a non-negative integer. A value of zero indicates that no
quantization is performed.

phased.BeamscanEstimator

Example: 5
Data Types: single | double

ForwardBackwardAveraging — Enable forward-backward averaging
false (default) | true

Enable forward-backward averaging, specified as false or true. Set this property to
true to use forward-backward averaging to estimate the covariance matrix for sensor
arrays with a conjugate symmetric array manifold.

Data Types: logical

SpatialSmoothing — Enable spatial smoothing
0 (default) | nonnegative integer

Option to enable spatial smoothing, specified as a nonnegative integer. Use spatial
smoothing to compute the arrival directions of coherent signals. A value of zero specifies
no spatial smoothing. A positive value represents the number of subarrays used to
compute the smoothed (averaged) source covariance matrix. Each increment in this value
lets you handle one additional coherent source, but reduces the effective number of array
elements by one. The length of the smoothing aperture, L, depends on the array length,
M, and the averaging number, K, by L = M - K + 1. The maximum value of Kis M - 2.

Example: 5
Data Types: double

ScanAngles — Broadside scan angles
[-90:90] (default) | real-valued K-length vector

Broadside scan angles, specified as a real-valued vector. Units are in degrees. Broadside
angles are between the search direction and the ULA array axis. The angles lie between -
90° and 90°, inclusive. Specify the angles in increasing value.

Example: [-20:20]
Data Types: single | double

DOAQutputPort — Enable directions of arrival output
false (default) | true

Option to enable directions-of-arrival (DOA) output, specified as false or true. To obtain
the DOA of signals, set this property to true. The DOAs are returned in the second
output argument when the object is executed.

1-187

1 Alphabetical List

1-188

Data Types: logical

NumSignals — Number of arriving signals
1 (default) | positive integer

Number of arriving signals for DOA estimation, specified as a positive integer.
Example: 3

Dependencies

To enable this property, set the DOAOutputPort property to true.
Data Types: single | double

Usage

Syntax

Y = estimator(X)
[Y,ANG] = estimator(X)

Description
Y = estimator(X) estimates the spatial spectrum from data X.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

[Y,ANG] = estimator(X) returns the directions of arrival, ANG, of the signals. To
enable this syntax, set the DOAOutputPort property to true. ANG is a row vector of the
estimated broadside angles (in degrees). You can specify ANG as single or double
precision. If the object cannot identify a signal direction, it will return NaN.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change

phased.BeamscanEstimator

nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

X — Channel data
complex-valued matrix

Channel data, specified as a complex-valued matrix. Columns of the data matrix
correspond to channels.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

Y — Magnitude of estimated spatial spectrum
real-valued 1-by-L column vector

Magnitude of the estimated spatial spectrum, returned as a real-valued 1-by-L column
vector. L is the number of scan angles specified by the ScanAngles property.

Data Types: single | double

ANG — Estimated broadside angles
real-valued 1-by-K row vector | NaN

Estimated broadside angles of signal arrivals, returned as a real-valued 1-by-K row vector.

Units are in degrees. The NaN value in any vector element indicates that an estimate
could not be found.

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

1-189

1 Alphabetical List

1-190

Specific to spectral estimation
plotSpectrum Plot spatial spectrum

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Estimate Directions of Arrival of Two Signals

Estimate the DOA's of two signals received by a 10-element ULA with element spacing of
1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is 10° in azimuth and 20° in elevation. The direction of the second signal is 60° in
azimuth and -5° in elevation.

Create the signals and array.

fs = 8000;

t = (0:1/fs:1).";

x1 = cos(2*pi*t*300);
X2 = COS(2*pi*t*400);

antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6 300e6]);
array = phased.ULA('Element',antenna, 'NumElements',10, 'ElementSpacing',1);
fc = 150e6;

x = collectPlaneWave(array, [x1 x2],[10 20;60 -5]1',6fc);

noise = 0.1*(randn(size(x)) + li*randn(size(x)));

Solve for the DOAs.

estimator = phased.BeamscanEstimator('SensorArray',array,
'OperatingFrequency', fc, 'DOAOutputPort', true, 'NumSignals',2);

[~,doas] = estimator(x + noise);

doas = broadside2az(sort(doas),[20 -5]);

disp(doas)

9.5829 60.3813

phased.BeamscanEstimator

Because the default values for the ScanAngles property has a granularity of 1°, the DOA
estimates are not accurate. Improve the accuracy by choosing a finer grid.
estimator2 = phased.BeamscanEstimator('SensorArray',array,
'OperatingFrequency', fc, 'ScanAngles',-60:0.1:60,
'DOAQutputPort',true, 'NumSignals',2);
[~,doas] = estimator2(x + noise);

doas = broadside2az(sort(doas),[20 -5]1);
disp(doas)

10.0093 59.9751
Plot the beamscan spectrum

plotSpectrum(estimator)

1-191

1 Alphabetical List

Beamscan Spatial Spectrum

T T T T T | .l'l '\..I T T lll__ T "\‘ T
16 [5 1
I II| 'I
14T i f \ 1
| | \
| I
1271 I II II " .
|
I | | ! \
= 107 R | \]
2 -\\.__ I [|I ~
@ 8 | | I T
z \ | | I
o gt | i
| I I
AA [
4k | l,l'f \I'-. M\ f \ f |II 4
(A M | TR]I
2r I . I I-I | t i
II | i | [11 L
II I|I ,I Ilu"\ rf”‘- II | | 1) Y
or i I fA I 7
| | . st f |
| W | Voo L I | | | | |
-80 60 =40 =20 0 20 40 60 80
Broadside Angle (degrees)
Algorithms

Data Precision

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

1-192

phased.BeamscanEstimator

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002, pp.
1142-1143.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

See Also

broadside2az | phased.BeamscanEstimator2D

Introduced in R2012a

1-193

1 Alphabetical List

1-194

phased.BeamscanEstimator2D

Package: phased

2-D beamscan spatial spectrum estimator

Description

The phased.BeamscanEstimator2D System object calculates a beamscan 2-D spatial
spectrum estimate for an arbitrary array (ULA). The object estimates the incoming signal
spatial spectrum using a narrowband conventional beamformer.

To estimate the spatial spectrum:

1 Create the phased.BeamscanEstimator2D object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

estimator = phased.BeamscanEstimator2D
estimator phased.BeamscanEstimator2D(Name,Value)

Description

estimator = phased.BeamscanEstimator2D creates a beamscan 2-D spatial
spectrum estimator System object.

estimator = phased.BeamscanEstimator2D(Name,Value) creates an object,
estimator, with each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN).

phased.BeamscanEstimator2D

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SensorArray — Sensor array

phased.ULA array with default array properties (default) | Phased Array System Toolbox
array System object

Sensor array, specified as a Phased Array System Toolbox array System object.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters
per second. The default propagation speed is the value returned by
physconst('LightSpeed').

Example: 3e8

Data Types: single | double

OperatingFrequency — Operating frequency

300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9

Data Types: single | double

NumPhaseShifterBits — Number of phase shifter quantization bits
0 (default) | non-negative scalar

1-195

1 Alphabetical List

1-196

The number of bits used to quantize the phase shift component of beamformer or steering
vector weights, specified as a non-negative integer. A value of zero indicates that no
quantization is performed.

Example: 5
Data Types: single | double

ForwardBackwardAveraging — Enable forward-backward averaging
false (default) | true

Enable forward-backward averaging, specified as false or true. Set this property to
true to use forward-backward averaging to estimate the covariance matrix for sensor
arrays with a conjugate symmetric array manifold.

Data Types: logical

AzimuthScanAngles — Azimuth scan angles
[-90:90] (default) | real-valued row vector

Azimuth scan angles, specified as a or real-valued row vector. Angle units are in degrees.
The angle values must lie between -180° and 180°, inclusive, and be in ascending order.
Example: [-30:20]

Data Types: single | double

ElevationScanAngles — Elevation scan angles
0 (default) | real-valued row vector

Elevation scan angles, specified as a real-valued row vector. Angle units are in degrees.
The angle values must lie between -90° and 90°, inclusive, and be in ascending order.
Example: [-70:75]

Data Types: single | double

DOAOutputPort — Enable directions of arrival output
false (default) | true

Option to enable directions-of-arrival (DOA) output, specified as false or true. To obtain
the DOA of signals, set this property to true. The DOAs are returned in the second
output argument when the object is executed.

Data Types: logical

phased.BeamscanEstimator2D

NumSignals — Number of arriving signals
1 (default) | positive integer

Number of arriving signals for DOA estimation, specified as a positive integer.
Example: 3

Dependencies

To enable this property, set the DOAOutputPort property to true.

Data Types: single | double

Usage

Syntax

Y = estimator(X)
[Y,ANG] = estimator(X)

Description
Y = estimator(X) estimates the spatial spectrum from data X.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

[Y,ANG] = estimator(X) returns the directions of arrival, ANG, of the signals. To
enable this syntax, set the DOAOutputPort property to true. ANG is a 2-by-N matrix of
the estimated azimuths and elevations of the signal direction. N is specified by the
NumSignals property. If the object cannot identify a signal direction, it will return NaN.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

1-197

1 Alphabetical List

1-198

Input Arguments

X — Array data
complex-valued matrix

Array data, specified as a complex-valued matrix. Columns of the data matrix correspond
to channels.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

Y — Magnitude of estimated spatial spectrum
positive, real-valued, K-by-L matrix

Magnitude of the estimated spatial spectrum, returned as a positive, real-valued, K-by-L
matrix.
Data Types: single | double

ANG — Estimated direction angles of signal arrivals
real-valued 2-by-K matrix | NaN

Estimated direction angles of signal arrivals, returned as a real-valued 2-by-K matrix.
Each column has the form [azimuth;elevation]. The NaN value in any matrix element
indicates that an estimate could not be found. Units are in degrees.

Data Types: single | double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to spectral estimation
plotSpectrum Plot spatial spectrum

phased.BeamscanEstimator2D

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Estimate Directions of Arrival of Two Signals

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is -37° in azimuth and 0° in elevation. The direction of the second signal is 17° in
azimuth and 20° in elevation.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6 300e6]);

array = phased.URA('Element',antenna, 'Size',[5 10], 'ElementSpacing',[1l 0.6]);

fc = 150e6;

lambda = physconst('LightSpeed')/fc;

angl = [-37.5; 10.2];

ang2 = [17.4; 20.6];

x = sensorsig(getElementPosition(array)/lambda, 8000, [angl ang2],0.2);

estimator = phased.BeamscanEstimator2D('SensorArray',array, 'OperatingFrequency',fc, .
'DOAQutputPort',true, 'NumSignals',2, 'AzimuthScanAngles',-50:50, 'ElevationScanAngle:

[~,doas] = estimator(x);

disp(doas)
17 -37
20 10

Because the values for the AzimuthScanAngles and ElevationScanAngles properties

have a granularity of 1°, the DOA estimates are not accurate. Improve the accuracy by
choosing a finer grid

estimator2 = phased.BeamscanEstimator2D('SensorArray',array, 'OperatingFrequency',fc, .
'DOAQutputPort',true, 'NumSignals',2, 'AzimuthScanAngles',-50:0.05:50, 'ElevationScan,

[~,doas] = estimator2(x);

disp(doas)

17.3000 -37.4000
20.5000 10.3000

1-199

1 Alphabetical List

Plot the beamscan spatial spectrum

plotSpectrum(estimator)

2-D Beamscan Spatial Spectrum

35
30

25

Fower [dB)

20

15

10

40 50
Azimuth Angle (degrees)

Elevation Angle (degrees)

Algorithms

Data Precision

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

1-200

phased.BeamscanEstimator2D

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

See Also

phased.BeamscanEstimator | phitheta2azel | uv2azel

Introduced in R2012a

1-201

1 Alphabetical List

1-202

plotSpectrum

System object: phased.BeamscanEstimator2D
Package: phased

Plot spatial spectrum

Syntax

plotSpectrum(estimator)
plotSpectrum(estimator,Name,Value)
hl = plotSpectrum()

Description

plotSpectrum(estimator) plots the spatial spectrum resulting from the most recent
execution of the object.

plotSpectrum(estimator,Name,Value) plots the spatial spectrum with additional
options specified by one or more Name, Value pair arguments.

hl = plotSpectrum() returns the line handle in the figure.

Input Arguments

H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

plotSpectrum

NormalizeResponse

Set this value to true to plot the normalized spectrum. Setting this value to false plots
the spectrum without normalization.

Default: false

Title

Character vector to use as figure title.
Default: '’

Unit

Plot units, specified as 'db', 'mag', or 'pow'.

Default: 'db'

Examples

Estimate Directions of Arrival of Two Signals

Estimate the DOAs of two signals received by a 50-element URA with a rectangular
lattice. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is -37° in azimuth and 0° in elevation. The direction of the second signal is 17° in
azimuth and 20° in elevation.

antenna = phased.IsotropicAntennaElement('FrequencyRange', [100e6 300e6]);

array = phased.URA('Element',antenna, 'Size',[5 10], 'ElementSpacing',[1 0.6]);

fc = 150e6;

lambda = physconst('LightSpeed')/fc;

angl = [-37.5; 10.2];

ang2 = [17.4; 20.6];

x = sensorsig(getElementPosition(array)/lambda,8000,[angl ang2],0.2);

estimator = phased.BeamscanEstimator2D('SensorArray',array, 'OperatingFrequency', fc, .
'DOAQutputPort',true, 'NumSignals',2, 'AzimuthScanAngles', -50:50, 'ElevationScanAngle:

[~,doas] = estimator(x);

disp(doas)
17 -37
20 10

1-203

1 Alphabetical List

Because the values for the AzimuthScanAngles and ElevationScanAngles properties

have a granularity of 1°, the DOA estimates are not accurate. Improve the accuracy by
choosing a finer grid

estimator2 = phased.BeamscanEstimator2D('SensorArray',array, 'OperatingFrequency', fc, .
'DOAQutputPort',true, 'NumSignals',2, 'AzimuthScanAngles',-50:0.05:50, 'ElevationScan,

[~,doas] = estimator2(x);

disp(doas)

17.3000 -37.4000
20.5000 10.3000

Plot the beamscan spatial spectrum

plotSpectrum(estimator)

1-204

plotSpectrum

2-D Beamscan Spatial Spectrum

-40

Elevation Angle (degrees)

-50
Azimuth Angle (degrees)

35

30

25

20

15

10

Fower (dB)

1-205

1 Alphabetical List

reset

System object: phased.BeamscanEstimator2D
Package: phased

Reset states of 2-D beamscan spatial spectrum estimator object

Syntax

reset(H)

Description

reset (H) resets the states of the BeamscanEstimator2D object, H.

1-206

step

step

System object: phased.BeamscanEstimator2D
Package: phased

Perform 2-D spatial spectrum estimation

Syntax

Y = step(H,X)
[Y,ANG] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a
matrix whose columns correspond to channels. Y is a matrix representing the magnitude
of the estimated 2-D spatial spectrum. Y has a row dimension equal to the number of
elevation angles specified in ElevationScanAngles and a column dimension equal to
the number of azimuth angles specified in AzimuthScanAngles. You can specify X as
single or double precision.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s direction of arrival
(DOA) when the DOAQutputPort property is true. ANG is a two row matrix where the
first row represents the estimated azimuth and the second row represents the estimated
elevation (in degrees).

The size of the first dimension of the input matrix can vary to simulate a changing signal

length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

1-207

1 Alphabetical List

1-208

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Estimate DOAs of Two Sinusoidal Signals

Estimate the DOAs of two sinusoidal signals received by a 50-element URA with a
rectangular lattice. The antenna operating frequency is 150 MHz. The actual direction of
the first signal is -37° in azimuth and 0° in elevation. The direction of the second signal is
17° in azimuth and 20° in elevation.

Create the signals and solve for the DOA's.

fs = 8000;

t = (0:1/fs:1).";

x1 = cos(2*pi*t*300);
X2 = cos(2*pi*t*400);

array = phased.URA('Size',[5 10], 'ElementSpacing',[1l 0.6]);

array.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(array, [x1 x2],[-37 0; 17 20]',fc);

noise = 0.1*(randn(size(x)) + li*randn(size(x)));

estimator = phased.BeamscanEstimator2D('SensorArray',array,
'OperatingFrequency', fc, ..
'DOAQutputPort', true, 'NumSignals',?2,
"AzimuthScanAngles', -50:50,
'ElevationScanAngles',-30:30);

[~,doas] = estimator(x + noise)

doas = 2x2

-37 17
0 20

Plot the spatial spectrum.

step

plotSpectrum(estimator)

2-D Beamscan Spatial Spectrum

30

25

Power (dB)
52 o 8 B 8

Fower (dB)

40 50
Azimuth Angle (degrees)

Elevation Angle (degrees)

See Also
azel2phitheta | azel2uv

1-209

1 Alphabetical List

1-210

phased.BeamspaceESPRITEstimator

Package: phased

Beamspace ESPRIT direction of arrival (DOA) estimator for ULA

Description

The BeamspaceESPRITEstimator object computes a DOA estimate for a uniform linear
array. The computation uses the estimation of signal parameters via rotational invariance
techniques (ESPRIT) algorithm in beamspace.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-210.

2 (Call step to estimate the DOA according to the properties of
phased.BeamspaceESPRITEstimator. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

H = phased.BeamspaceESPRITEstimator creates a beamspace ESPRIT DOA
estimator System object, H. The object estimates the signal's direction of arrival using the
beamspace ESPRIT algorithm with a uniform linear array (ULA).

H = phased.BeamspaceESPRITEstimator(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

phased.BeamspaceESPRITEstimator

Properties

SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.
Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You
can specify this property as single or double precision.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz. You can specify this property as single or double
precision.

Default: 3e8

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance
matrix as a nonnegative integer. Each additional smoothing handles one extra coherent
source, but reduces the effective number of element by 1. The maximum value of this
property is M-2, where M is the number of sensors. You can specify this property as

single or double precision.

Default: 0, indicating no spatial smoothing

1-211

1 Alphabetical List

1-212

NumSignalsSource
Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set
this property to 'Auto’, the number of signals is estimated by the method specified by
the NumSignalsMethod property. You can specify this property as single or double
precision.

Default: 'Auto’
NumSignalsMethod
Method to estimate number of signals

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. 'AIC'
uses the Akaike Information Criterion and 'MDL' uses Minimum Description Length
Criterion. This property applies when you set the NumSignalsSource property to
"Auto’.

Default: 'AIC'
NumSignals
Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you
set the NumSignalsSource property to 'Property'. You can specify this property as
single or double precision.

Default: 1
Method
Type of least square method

Specify the least squares method used for ESPRIT as one of 'TLS' or 'LS'. 'TLS"' refers
to total least squares and 'LS' refers to least squares.

Default: 'TLS'
BeamFanCenter

Beam fan center direction (in degrees)

phased.BeamspaceESPRITEstimator

Specify the direction of the center of the beam fan (in degrees) as a real scalar value
between -90 and 90. You can specify this property as single or double precision. This
property is tunable.

Default: 0

NumBeamsSource

Source of number of beams

Specify the source of the number of beams as one of 'Auto' or 'Property'. If you set
this property to 'Auto’, the number of beams equals N-L, where N is the number of
array elements and L is the value of the SpatialSmoothing property.

Default: 'Auto’

NumBeams

Number of beams

Specify the number of beams as a positive scalar integer. The lower the number of beams,
the greater the reduction in computational cost. This property applies when you set the
NumBeamsSource to 'Property'. You can specify this property as single or double

precision.

Default: 2

Methods

step Perform DOA estimation

Common to All System Objects

release |Allow System object property value changes

Examples

1-213

1 Alphabetical List

1-214

Estimate DOA of Two Signals Using Beamspace ESPRIT

Estimate the directions of arrival (DOA) of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency is 150 MHz. The
actual direction of the first signal is 10° in azimuth and 20° in elevation. The direction of
the second signal is 45° in azimuth and 60° in elevation.

Create the two signals arriving at the array.

fs = 8000;

t = (0:1/fs:1).";

x1 = cos(2*pi*t*300);

X2 = COS(2*pi*t*400);

array = phased.ULA('NumElements',10, 'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(array, [x1 x2],[10 20;45 60]',fc);
noise = 0.1/sqrt(2)*(randn(size(x)) + li*randn(size(x)));

Set up the beamspace ESPRIT estimator and solve for the DOAs.

estimator = phased.BeamspaceESPRITEstimator('SensorArray',array,
'OperatingFrequency', fc, 'NumSignalsSource', 'Property', 'NumSignals',?2);

doas = estimator(x + noise);

az = broadside2az(sort(doas),[20 60])

az = 1Ix2

9.9972 45.0061

Algorithms

Data Precision

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

phased.BeamspaceESPRITEstimator

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

See Also
broadside2az | phased.ESPRITEstimator

Introduced in R2012a

1-215

1 Alphabetical List

1-216

step

System object: phased.BeamspaceESPRITEstimator
Package: phased

Perform DOA estimation

Syntax

ANG = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

ANG = step(H,X) estimates the DOAs from X using the DOA estimator H. X is a matrix
whose columns correspond to channels. ANG is a row vector of the estimated broadside
angles (in degrees). You can specify the input data X as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

step

Examples

Estimate DOA of Two Signals Using Beamspace ESPRIT

Estimate the directions of arrival (DOA) of two signals received by a standard 10-element
ULA with element spacing 1 meter. The antenna operating frequency is 150 MHz. The
actual direction of the first signal is 10° in azimuth and 20° in elevation. The direction of

the second signal is 45° in azimuth and 60° in elevation.

Create the two signals arriving at the array.

fs = 8000;

t = (0:1/fs:1).";

x1 = cos(2*pi*t*300);
X2 = COS(2*pi*t*400);

array = phased.ULA('NumElements',10, 'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];

fc = 150e6;

x = collectPlaneWave(array, [x1 x2],[10 20;45 60]',fc);
noise = 0.1/sqrt(2)*(randn(size(x)) + li*randn(size(x)));

Set up the beamspace ESPRIT estimator and solve for the DOAs.

estimator = phased.BeamspaceESPRITEstimator('SensorArray',array,

'OperatingFrequency', fc, '"NumSignalsSource', 'Property', 'NumSignals',2);

doas = estimator(x + noise);
az = broadside2az(sort(doas),[20 60])

az = 1Ix2

9.9972 45.0061

1-217

1 Alphabetical List

1-218

phased.CFARDetector

Package: phased

Constant false alarm rate (CFAR) detector

Description

The CFARDetector object implements a one-dimensional constant false-alarm rate
(CFAR) detector. Detection processing is performed on selected elements (called cells) of
the input data. A detection is declared when an image cell value exceeds a threshold. To
maintain a constant false alarm-rate, the threshold is set to a multiple of the image noise
power. The detector estimates noise power for a cell-under-test (CUT) from surrounding
cells using one of three cell averaging methods, or an order statistics method. The cell-
averaging methods are cell averaging (CA), greatest-of cell averaging (GOCA), or
smallest-of cell averaging (SOCA).

For more information about CFAR detectors, see [1].

For each test cell, the detector:

1 estimates the noise statistic from the cell values in the training band surrounding the
CUT cell.
computes the threshold by multiplying the noise estimate by the threshold factor.

compares the CUT cell value to the threshold to determine whether a target is
present or absent. If the value is greater than the threshold, a target is present.

To run the detector

1 Define and set up your CFAR detector. See “Construction” on page 1-219.

2 Call step to perform CFAR detection according to the properties of
phased.CFARDetector. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a

phased.CFARDetector

function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

H = phased.CFARDetector creates a CFAR detector System object, H. The object
performs CFAR detection on input data.

H = phased.CFARDetector(Name,Value) creates the object, H, with each specified

property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

Method
CFAR algorithm

Specify the CFAR detector algorithm as one of

'CA' Cell-averaging CFAR
"GOCA' Greatest-of cell-averaging CFAR
'0s! Order statistic CFAR
'SOCA' Smallest-of cell-averaging CFAR
Default: 'CA'
Rank

Rank of order statistic

Specify the rank of the order statistic as a positive integer scalar. The value must be less
than or equal to the value of the NumTrainingCells property. This property applies only
when you set the Method property to '0S'. This property supports single and double
precision,

Default: 1

1-219

1 Alphabetical List

NumGuardCells

Number of guard cells

Specify the number of guard cells used in training as an even integer. This property
specifies the total number of cells on both sides of the cell under test. This property

supports single and double precision,

Default: 2, indicating that there is one guard cell at both the front and back of the cell
under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in training as an even integer. Whenever
possible, the training cells are equally divided before and after the cell under test. This
property supports single and double precision, This property supports single and double

precision,

Default: 2, indicating that there is one training cell at both the front and back of the cell
under test

ThresholdFactor
Methods of obtaining threshold factor
Specify whether the threshold factor comes from an automatic calculation, the

CustomThresholdFactor property of this object, or an input argument in step. Values
of this property are:

"Auto’ The application calculates the threshold factor
automatically based on the desired probability of false
alarm specified in the ProbabilityFalseAlarm
property. The calculation assumes each independent
signal in the input is a single pulse coming out of a
square law detector with no pulse integration. The
calculation also assumes the noise is white Gaussian.

"Custom’ The CustomThresholdFactor property of this object
specifies the threshold factor.

1-220

phased.CFARDetector

‘Input port' An input argument in each invocation of step
specifies the threshold factor.

Default: 'Auto’
ProbabilityFalseAlarm
Desired probability of false alarm

Specify the desired probability of false alarm as a scalar between 0 and 1 (not inclusive).
This property applies only when you set the ThresholdFactor property to 'Auto’.

Default: 0.1
CustomThresholdFactor
Custom threshold factor

Specify the custom threshold factor as a positive scalar. This property applies only when
you set the ThresholdFactor property to ' Custom'. This property is tunable. This
property supports single and double precision,

Default: 1
OutputFormat
Format of detection results

Format of detection results returned by the step method, specified as 'CUT result' or
‘Detection index"'.

* When setto 'CUT result', the results are logical detection values (1 or 0) for each
tested cell. 1 indicates that the value of the tested cell exceeds a detection threshold.

* When set to 'Detection index', the results form a vector or matrix containing the
indices of tested cells which exceed a detection threshold. You can use this format as
input to the phased.RangeEstimator and phased.DopplerEstimator System
objects.

Default: 'CUT result'
ThresholdOutputPort

Output detection threshold

1-221

1 Alphabetical List

1-222

To obtain the detection threshold, set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the detection
threshold, set this property to false.

Default: false
NoisePowerOutputPort
Output estimated noise

To obtain the estimated noise, set this property to true and use the corresponding output
argument when invoking step. If you do not want to obtain the estimated noise, set this
property to false.

Default: false
NumDetectionsSource
Source of the number of detections

Source of the number of detections, specified as 'Auto' or 'Property'. When you set
this property to 'Auto’, the number of detection indices reported is the total number of
cells under test that have detections. If you set this property to 'Property', the number
of reported detections is determined by the value of the NumDetections property.

Dependencies

To enable this property, set the OutputFormat property to 'Detection index'.
Default: 'Auto’

NumDetections

Maximum number of detections to report

Maximum number of detection indices to report, specified as a positive integer.

Dependencies

To enable this property, set the QutputFormat property to 'Detection index' and the
NumDetectionsSource property to 'Property’.

Data Types: double

Default: 1

phased.CFARDetector

Methods

step Perform CFAR detection

Common to All System Objects

release |Allow System object property value changes

Examples

Compute PFA Using CFAR Detector On Noise

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired
probability of false alarm (pfa) of 0.1. Assume that the data comes from a square law
detector and no pulse integration is performed. Use 50 cells to estimate the noise level
and 1 cell to separate the test cell and training cells. Perform the detection on all cells of
the input.

detector = phased.CFARDetector('NumTrainingCells',50,...
"NumGuardCells',2, 'ProbabilityFalseAlarm',0.1);

N 1000;

X 1/sqrt(2)*(randn(N,1) + li*randn(N,1));

dets = detector(abs(x).”2,1:N);

pfa = sum(dets)/N

pfa = 0.1140

Compute CFAR Detection Indices

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired
probability of false alarm (pfa) of 0.005. Assume that the data comes from a square law
detector and no pulse integration is performed. Perform the detection on all cells of the
input. Use 50 cells to estimate the noise level and 1 cell to separate the test cell and
training cells. Display the detection indices.

rng default;
detector = phased.CFARDetector('NumTrainingCells',50, 'NumGuardCells"',?2,

1-223

1 Alphabetical List

'ProbabilityFalseAlarm',0.005, 'OutputFormat', 'Detection index');
N = 1000;
x 1/sqrt(2)*(randn(N,1) + li*randn(N,1));
1/sqrt(2)*(randn(N,1) + li*randn(N,1));
= [x1,x2];
cutidx = 1:N;
dets = detector(abs(x).”2,cutidx)

dets = 2x11

339 537 538 734 786 827 979 136 418 539 874
1 1 1 1 1 1 1 2 2 2 2

Algorithms

CFAR Detection

phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise estimate. The next table
indicates how the detector forms the noise estimate, depending on the Method

property value.

Method Noise Estimate

"CA' Use the average of the values in all the training cells.

'GOCA" Select the greater of the averages in the front training
cells and rear training cells.

'0S! Sort the values in the training cells in ascending order.
Select the Nth item, where N is the value of the Rank
property.

'SOCA" Select the smaller of the averages in the front training
cells and rear training cells.

Multiply the noise estimate by the threshold factor to form the threshold.

Compare the value in the test cell against the threshold to determine whether the
target is present or absent. If the value is greater than the threshold, the target is
present.

1-224

phased.CFARDetector

Data Precision
This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If

the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If

the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

See Also
npwgnthresh | phased.MatchedFilter | phased.TimeVaryingGain

Introduced in R2012a

1-225

1 Alphabetical List

1-226

step

System object: phased.CFARDetector
Package: phased

Perform CFAR detection

Syntax

Y = step(H, X, cutidx)

[Y,th] = step()

[Y,noise] = step()

Y = step(H, X, cutidx, thfac)
[Y,TH,N] = step(H, X, cutidx,thfac)

Description

Note Starting in R2016Db, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Y = step(H, X, cutidx) performs CFAR detection on specified elements of the input
data, X. X can either be a real-valued M-by-1 column vector or a real-valued M-by-N
matrix. cutidx is a length-D vector of indices specifying the input elements or cells
under test (CUT) on which to perform detection processing. When X is a vector, cutidx
specifies the element. When X is a matrix, cutidx specifies the row of the element. The
same index applies to all columns of the matrix. Detection is performed independently
along each column of X for the indices specified in cutidx. You can specify the input
arguments as single or double precision.

The output argument Y contains detection results. The format of Y depends on the
OutputFormat property.

step

* When QutputFormatis 'Cut result', Y isa D-by-1 vector or a D-by-N matrix
containing logical detection results. D is the length of cutidx and N is the number of
columns of X. The rows of Y correspond to the rows in cutidx. For each row, Y
contains 1 in a column if there is a detection in the corresponding column of X.
Otherwise, Y contains a 0.

* When OutputFormat is 'Detection report', Y is a I-by-L vector or a 2-by-L
matrix containing detections indices. L is the number of detections found in the input
data. When X is a column vector, Y contains the index for each detection in X. When X
is a matrix, Y contains the row and column indices of each detection in X. Each column
of Y has the form [detrow;detcol]. When the NumDetectionsSource property is
set to 'Property', L equals the value of the NumDetections property. If the number
of actual detections is less than this value, columns without detections are set to NaN.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

[Y,th] = step(__) alsoreturns the detection threshold, th, applied to detected
cells under test.

* When QutputFormatis 'CUT result’, th returns the detection threshold whenever
an element of Y is 1 and NaN whenever an element of Y is 0. th has the same size as Y.

* When OutputFormat is 'Detection index', th returns a detection threshold for
each corresponding detection in Y. When the NumDetectionsSource property is set
to 'Property’', L equals the value of the NumDetections property. If the number of
actual detections is less than this value, columns without detections are set to NaN.

To enable this syntax, set the ThresholdOutputPort property to true.

[Y,noise] = step() also returns the estimated noise power, noise, for each
detected cell under test in X.

* When QutputFormatis 'CUT result', noise returns a noise power estimate when
Y is 1 and NaN whenever Y is zero. noise has the same size as Y.

* When OutputFormat is 'Detection index', noise returns a noise power estimate
for each corresponding detection in Y. When the NumDetectionsSource property is
set to 'Property', L equals the value of the NumDetections property. If the number
of actual detections is less than this value, columns without detections are set to NaN.

To enable this syntax, set the NoisePowerQutputPort property to true.

1-227

1 Alphabetical List

1-228

Y = step(H, X, cutidx,thfac), in addition, specifies thfac as the threshold factor
used to calculate the detection threshold. thfac must be a positive scalar. To enable this
syntax, set the ThresholdFactor property to ' Input port'.

You can combine optional input and output arguments when their enabling properties are
set. Optional inputs and outputs must be listed in the same order as the order of the
enabling properties. For example, [Y,TH,N] = step(H, X, cutidx,thfac).

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Examples

Compute PFA Using CFAR Detector On Noise

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired
probability of false alarm (pfa) of 0.1. Assume that the data comes from a square law
detector and no pulse integration is performed. Use 50 cells to estimate the noise level
and 1 cell to separate the test cell and training cells. Perform the detection on all cells of
the input.

detector = phased.CFARDetector('NumTrainingCells"',50, ...
"NumGuardCells',2, 'ProbabilityFalseAlarm',0.1);

N 1000;

X 1/sqrt(2)*(randn(N,1) + li*randn(N,1));

dets = detector(abs(x).”2,1:N);

pfa = sum(dets)/N

pfa = 0.1140

Compute CFAR Detection Indices

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired
probability of false alarm (pfa) of 0.005. Assume that the data comes from a square law

step

detector and no pulse integration is performed. Perform the detection on all cells of the
input. Use 50 cells to estimate the noise level and 1 cell to separate the test cell and
training cells. Display the detection indices.

rng default;
detector = phased.CFARDetector('NumTrainingCells', 50, 'NumGuardCells"',?2,
'ProbabilityFalseAlarm',0.005, 'OutputFormat', 'Detection index');
= 1000;
1/sqrt(2)*(randn(N,1) + li*randn(N,1));
1/sqrt(2)*(randn(N,1) + li*randn(N,1));
X = [x1,x2];
cutidx = 1:N;
dets = detector(abs(x).”2,cutidx)

X

dets = 2x11
339 537 538 734 786 827 979 136 418 539 874
1 1 1 1 1 1 1 2 2 2 2
Algorithms

phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise estimate. The next table
indicates how the detector forms the noise estimate, depending on the Method
property value.

Method Noise Estimate

"CA' Use the average of the values in all the training cells.

'GOCA" Select the greater of the averages in the front training
cells and rear training cells.

'0S' Sort the values in the training cells in ascending order.
Select the Nth item, where N is the value of the Rank
property.

'SOCA" Select the smaller of the averages in the front training

cells and rear training cells.

2 Multiply the noise estimate by the threshold factor to form the threshold.

1-229

1 Alphabetical List

3 Compare the value in the test cell against the threshold to determine whether the
target is present or absent. If the value is greater than the threshold, the target is
present.

For details, see [1].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

1-230

phased.CFARDetector2D

phased.CFARDetector2D

Package: phased

Two-dimensional CFAR detector

Description

phased.CFARDetector2D System object implements a constant false-alarm rate
detector (CFAR) for selected elements (called cells) of two-dimensional image data. A
detection is declared when an image cell value exceeds a threshold. To maintain a
constant false alarm-rate, the threshold is set to a multiple of the image noise power. The
detector estimates noise power for a cell-under-test (CUT) from surrounding cells using
one of three cell averaging methods, or an order statistics method. The cell-averaging
methods are cell averaging (CA), greatest-of cell averaging (GOCA), or smallest-of cell
averaging (SOCA).

For each test cell, the detector:
1 estimates the noise statistic from the cell values in the training band surrounding the
CUT cell.

computes the threshold by multiplying the noise estimate by the threshold factor.

compares the CUT cell value to the threshold to determine whether a target is
present or absent. If the value is greater than the threshold, a target is present.

To run the detector

1 Define and set up your 2-D CFAR detector. You can set the
phased.CFARDetector2D System object properties when you create the object, or
leave them set to their default values. See “Construction” on page 1-232. Some
properties that you set at construction time can be changed later. These properties
are tunable.

2 Find the detections by calling the step method. The output of this method depends
on the properties of the phased.CFARDetector2D System object.

1-231

1 Alphabetical List

1-232

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) andy = obj(x) perform equivalent operations.

Construction

detector = phased.CFARDetector2D creates a 2-D CFAR detector System object,
detector.

detector = phased.CFARDetector2D(Name,Value) creates a 2-D CFAR System
object, detector, with each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN).

Properties

Method — Two-dimensional CFAR averaging method
'"CA' (default) | 'GOCA"' | 'SOCA' | '0S"

Two-dimensional CFAR averaging method, specified as 'CA', 'GOCA"', 'SOCA', or '0S".
For 'CA', 'GOCA"', 'SOCA", the noise power is the sample mean derived from the
training band. For '0S"', the noise power is the kth cell value obtained from numerically
ordering all training cell values. Set k using the Rank property.

Averaging Method Description

CA — Cell-averaging algorithm Computes the sample mean of all training
cells surrounding the CUT cell.

GOCA — Greatest-of cell-averaging Splits the 2-D training window surrounding

algorithm the CUT cell into left and right halves.
Then, the algorithm computes the sample
mean for each half and selects the largest
mean.

phased.CFARDetector2D

Averaging Method Description
SOCA — Smallest-of cell-averaging Splits the 2-D training window surrounding
algorithm the CUT cell into left and right halves.

Then, the algorithm computes the sample
mean for each half and selects the smallest
mean.

0S — Order statistic algorithm Sorts training cells in ascending order of
numeric values. Then the algorithm selects
the kth value from the list. k is the rank
specified by the Rank parameter.

Example: '0S'
Data Types: char

GuardBandSize — Widths of guard band
[1 1] (default) | nonnegative integer | 2-element vector of nonnegative integers

The number of rows and columns of the guard band cells on each side of the CUT cell,
specified as nonnegative integers. The first element specifies the guard band size along
the row dimension. The second element specifies the guard band size along the column
dimension. Specifying this property as a single integer is equivalent to specifying a guard
band with the same value for both dimensions. For example, a value of [1 1], indicates
that there is a one guard-cell-wide region surrounding each CUT cell. A value of zero
indicates there are no guard cells.

Example: [2 3]
Data Types: single | double

TrainingBandSize — Widths of training band
[1 1] (default) | positive integer | 2-element vector of positive integers

The number of rows and columns of the training band cells on each side of the CUT cell,
specified as a positive integer or a 1-by-2 matrix of positive integers. The first element
specifies the training band size along the row dimension. The second element specifies
the training band size along the column dimension. Specifying this property as a scalar is
equivalent to specifying a training band with the same value for both dimensions. For
example, a value of [1 1] indicates a 1 training-cell-wide region surrounding the CUT
cell.

Example: [-30:0.1:30]

1-233

1 Alphabetical List

1-234

Data Types: single | double

Rank — Rank of order statistic
1 (default) | positive integer

Rank of the order statistic used in the 2-D CFAR algorithm, specified as a positive integer.
The value of this property must lie between 1 and N;.;,, where N, is the number of
training cells. A value of 1 selects the smallest value in the training region.

Example: 5

Dependencies

To enable this property, set the Method property to '0S".
Data Types: single | double

ThresholdFactor — Threshold factor method
"Auto’ (default) | 'Input port' | 'Custom'

Threshold factor method, specified as 'Auto', 'Input port', or 'Custom'.

When you set the ThresholdFactor property to 'Auto’', the threshold factor is
calculated from the desired probability of false alarm set in the
ProbabilityFalseAlarm property. The calculation assumes that each independent
signal in the input is a single pulse coming out of a square law detector with no pulse
integration. In addition, the noise is assumed to be white Gaussian.

When you set the ThresholdFactor property to 'Input port', the threshold factor is
obtained from an input argument of the step method.

When you set the ThresholdFactor property to 'Custom', the threshold factor is
obtained from the value of the CustomThresholdFactor property.

Example: 'Custom'

Data Types: char

ProbabilityFalseAlarm — Required probability of false alarm
0.1 (default) | positive scalar between 0 and 1

Required probability of false alarm, specified as a real positive scalar between 0 and 1.
The algorithm calculates the threshold factor from the required probability of false alarm.

Example: 0.001

phased.CFARDetector2D

Dependencies

To enable this property, set the ThresholdFactor property to 'Auto’.
Data Types: single | double

CustomThresholdFactor — Custom threshold factor
1 (default) | positive scalar

Custom threshold factor, specified as a real positive scalar. This property is tunable.

Dependencies

To enable this property, set the ThresholdFactor property to 'Custom'.
Data Types: single | double

OutputFormat — Format of detection results
"CUT result' (default) | 'Detection index'

Format of detection results returned by the step method, specified as 'CUT result' or
‘Detection index"'.

* Whensetto 'CUT result', the results are logical detection values (1 or 0) for each
tested cell.

* When set to 'Detection index', the results form a vector or matrix containing the
indices of tested cells that exceed a detection threshold. You can use this format as
input to the phased.RangeEstimator and phased.DopplerEstimator System
objects.

Data Types: char

ThresholdOutputPort — Enable detection threshold output
false (default) | true

Option to enable detection threshold output, specified as false or true. Setting this
property to true returns the detection threshold via an output argument, th, of the step
method.

Data Types: Llogical

NoisePowerQutputPort — Enable noise power output
false (default) | true

1-235

1 Alphabetical List

1-236

Option to enable output of noise power, specified as false or true. Setting this property
to true returns the noise power via the output argument, noise, of the step method.

Data Types: logical

NumDetectionsSource — Source of the number of detections
"Auto’ (default) | 'Property

Source of the number of detections, specified as 'Auto' or 'Property'. When you set
this property to 'Auto’, the number of detection indices reported is the total number of
cells under test that have detections. If you set this property to 'Property"', the number
of reported detections is determined by the value of the NumDetections property.

Dependencies

To enable this property, set the OutputFormat property to 'Detection index'.
Data Types: char

NumDetections — Maximum number of detection indices to report
1 (default) | positive integer

Maximum number of detection indices to report, specified as a positive integer.

Example:

Dependencies

To enable this property, set the QutputFormat property to 'Detection index' and the
NumDetectionsSource property to 'Property"'.

Data Types: double

Methods

reset Reset states of System object
step Two-dimensional CFAR detection

Common to All System Objects

release Allow System object property value changes

phased.CFARDetector2D

Examples

Set 2-D CFAR Threshold for Noise-Only Data

This example shows how to set a 2-D CFAR threshold based upon a required probability of
false alarm (pfa).

Note: You can replace each call to the function with the equivalent step syntax. For
example, replace myObject (x) with step(myObject, x).

Perform cell-averaging CFAR detection on a 41-by-41 matrix of cells containing Gaussian
noise. Estimate the empirical pfa and compare it to the required pfa. To get a good
estimate, perform this simulation on 1000 similar matrices. First, set a threshold using
the required pfa. In this case, there are no targets and the pfa can be estimated from the
number of cells that exceed the threshold. Assume that the data is processed through a
square-law detector and that no pulse integration is performed. Use a training-cell band
of 3 cells in width and 4 cells in height. Use a guard band of 3 cells in width and 2 cells in
height to separate the cells under test (CUT) from the training cells. Specify a required
pfa of 5.0e-4.

p = 5e-4;
rs = RandStream.create('mt19937ar', 'Seed',5);
N = 41;

ntrials = 1000;

detector = phased.CFARDetector2D('TrainingBandSize',[4,3],
'"ThresholdFactor', 'Auto', 'GuardBandSize',[2,3], ...
'ProbabilityFalseAlarm',p, 'Method', 'SOCA', 'ThresholdOutputPort', true);

Create a 41-by-41 image containing random complex data. Then, square the data to
simulate a square-law detector.

x = 2/sqrt(2)*(randn(rs,N,N,ntrials) + li*randn(rs,N,N,ntrials));
x2 = abs(x)."2;

Process all the cells in each image. To do this, find the row and column of each CUT cell
whose training region falls entirely within each image.

Ngc = detector.GuardBandSize(2);
Ngr = detector.GuardBandSize(1);
Ntc = detector.TrainingBandSize(2);
Ntr = detector.TrainingBandSize(1);
cutidx = [1];

1-237

1 Alphabetical List

colstart = Ntc + Ngc + 1;
colend = N - (Ntc + Ngc);
rowstart = Ntr + Ngr + 1;
rowend = N - (Ntr + Ngr);

for m = colstart:colend
for n = rowstart:rowend
cutidx = [cutidx, [n;m]];
end
end
ncutcells = size(cutidx,?2);

Display the CUT cells.

cutimage = zeros(N,N);

for k = 1l:ncutcells
cutimage(cutidx(1,k),cutidx(2,k)) = 1;

end

imagesc(cutimage)

axis equal

1-238

phased.CFARDetector2D

45

Perform the detection on all CUT cells. Return the detection classification and the

threshold used to classify the cell.

[dets,th] = detector(x2,cutidx);

Find and display an image with a false alarm for illustration.

1:ntrials
dets(:,k);
f (any(d) > 0)
di = [di,k];

di = [];
for k =

k
d
i

end
end

1-239

1 Alphabetical List

1-240

idx = di(1);

detimg = zeros(N,N);

for k = 1l:ncutcells
detimg(cutidx(1,k),cutidx(2,k)) = dets(k,idx);

end

imagesc(detimg)

axis equal

10r

2871

35 r

40

Compute the empirical pfa.

pfa = sum(dets(:))/ntrials/ncutcells

4.5898e-04

pfa

The empirical and specified pfa agree.

45

phased.CFARDetector2D

Display the average empirical threshold value over all images.
mean(th(:))

ans = 31.7139

Compute the theoretical threshold factor for the required pfa.

threshfactor = npwgnthresh(p,1, 'noncoherent');
threshfactor = 10"~ (threshfactor/10);
disp(threshfactor)

7.6009

The theoretical threshold factor multiplied by the noise variance should agree with the
measured threshold.

noisevar = mean(x2(:));
disp(threshfactor*noisevar);

30.4118

The theoretical threshold and empirical threshold agree to within an acceptable
difference.

Detect Targets in Background Noise

Perform cell-averaging CFAR detection on a 41-by-41 matrix of cells containing five
closely-spaced targets in Gaussian noise. Perform this detection on a simulation of 1000
images. Use two detectors with different guard band regions. Set the thresholds manually
using the Custom threshold factor. Assume that the data is processed through a square
law-detector and that no pulse integration is performed. Use a training cell band of 2 cells
in width and 2 cells in height. For the first detector, use a guard band of 1 cell all around
to separate the CUT cells from the training cells. For the second detector, use a guard
band of 8 cells all around.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object, x).

p = 5e-4;
rs = RandStream.create('mt19937ar', 'Seed',5);

1-241

1 Alphabetical List

N = 41;
ntrials = 1000;

Create 1000 41-by-41 images of complex random noise with standard deviation of 1.

S
X

1;
s/sqrt(2)*(randn(rs,N,N,ntrials) + li*randn(rs,N,N,ntrials));

Set the target cells values to 1.5. Then, square the cell values.

A=1.5;
x(23,20,:
x(23,18,:
x(23,23,:
x(20,22,:
x(21,18,:) ;
X2 = abs(x).”2;

’
’

A
A
A;
A
A
2

~— — — ~—

’

Display the target cells.

xtgt = zeros(N
xtgt(23,20,:)
xtgt(23,18,:)
xtgt(23,23,:)
(1)

1)

)

~s ~

-~

xtgt (20,22,
xtgt (21,18,
imagesc(xtgt
axis equal
axis tight

~-

J>J>J>J>J>-’

~-

1-242

phased.CFARDetector2D

Set the CUT cells to be the target cells.

cutidx(1,1) = 23;
cutidx(2,1) = 20;
cutidx(1,2) = 23;
cutidx(2,2) = 18;
cutidx(1,3) = 23;
cutidx(2,3) = 23;
cutidx(1,4) = 20;
cutidx(2,4) = 22;
cutidx(1,5) = 21;
cutidx(2,5) = 18;

1-243

1 Alphabetical List

1-244

Perform the detection on all CUT cells using two CFAR 2-D detectors. The first detector
has a small guard band region. The training region can include neighboring targets which
can affect the computation of the noise power. The second detector has a larger guard
band region, which precludes target cells from being used in the noise computation.

Create the two CFAR detectors.

detectorl = phased.CFARDetector2D('TrainingBandSize',[2,2],
'GuardBandSize',[1,1], 'ThresholdFactor', 'Custom', 'Method', 'CA"',
'CustomThresholdFactor',2, 'ThresholdOutputPort', true);

detector2 = phased.CFARDetector2D('TrainingBandSize',[2,2],
'GuardBandSize',[8,8], 'ThresholdFactor', 'Custom', '"Method', 'CA"',
'CustomThresholdFactor',2, 'ThresholdOutputPort', true);

Return the detection classifications and the thresholds used to classify the cells. Then,
compute the probabilities of detection.

[detsl,thl] = detectorl(x2,cutidx);
ndets = numel(detsl(:));
pdl = sum(detsl(:))/ndets

pdl = 0.6416

[dets2,th2] = detector2(x2,cutidx);
pd2 = sum(dets2(:))/ndets

pd2 = 0.9396

The detector with the larger guard-band region has a higher pfa because the noise is
more accurately estimated.

More About

Training Cells

CFAR 2-D requires an estimate of the noise power. Noise power is computed from cells
that are assumed not to contain any target signal. These cells are the training cells.
Training cells form a band around the cell-under-test (CUT) cell but may be separated
from the CUT cell by a guard band. The detection threshold is computed by multiplying
the noise power by the threshold factor.

phased.CFARDetector2D

2 Training Band
Rows

Guard Band
Rows
Training Band Guard Band
Columns W Columns
Guard Band

CUT Cell

1-245

1 Alphabetical List

1-246

For GOCA and SOCA averaging, the noise power is derived from the mean value of one of
the left or right halves of the training cell region.

Because the number of columns in the training region is odd, the cells in the middle
column are assigned equally to either the left or right half.

When using the order-statistic method, the rank cannot be larger than the number of cells
in the training cell region, N;;,. You can compute Ny .

* Ny is the number of training band columns.

* Nrgis the number of training band rows.

* Ngc is the number of guard band columns.

* Nggis the number of guard band rows.

The total number of cells in the combined training region, guard region, and CUT cell is
Ntotal = (ZNTC + ZNGC + 1)(2NTR+ 2NGR + 1).

The total number of cells in the combined guard region and CUT cell is Nyy4rq = (2Ngc +
1)(2Ngg + 1).

The number of training cells is Ny.4in = Niotar = Nguara-

By construction, the number of training cells is always even. Therefore, to implement a
median filter, you can choose a rank of N4i/2 0T Nipin/2 + 1.

Algorithms

Data Precision

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If
the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

phased.CFARDetector2D

References

[1] Mott, H. Antennas for Radar and Communications. New York: John Wiley & Sons,
1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill,
2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and
arguments. If the input data X is single precision, the output data is single precision. If

the input data X is double precision, the output data is double precision. The precision of
the output is independent of the precision of the properties and other arguments.

See Also

Functions
npwgnthresh | rocpfa

System Objects
phased.CFARDetector

Blocks
2-D CFAR Detector | CFAR Detector

1-247

1 Alphabetical List

Topics
“Modeling Target Radar Cross Section”
“Designing a Basic Monostatic Pulse Radar”

Introduced in R2016b

1-248

reset

reset

System object: phased.CFARDetector2D
Package: phased

Reset states of System object

Syntax

reset(detector)

Description

reset(detector) resets the internal state of the phased.CFARDetector2Dobject,
detector.

Input Arguments

detector — Two-dimensional CFAR detector
phased.CFARDetector2D System object

Two-dimensional CFAR detector, specified as a phased.CFARDetector2D System object.

Introduced in R2016b

1-249

1 Alphabetical List

1-250

step

System object: phased.CFARDetector2D
Package: phased

Two-dimensional CFAR detection

Syntax

Y step(detector, X, cutidx)

Y step(detector, X, cutidx,K)
[Y,th] = step()

[Y,noise] = step()

Description

Note Alternatively, instead of using the step method to perform the operation defined by
the System object, you can call the object with arguments, as if it were a function. For
example, y = step(obj,x) andy = obj(x) perform equivalent operations.

Y = step(detector, X, cutidx) performs 2-D CFAR detection on input image data, X,
for the image cells under test (CUT) specified by cutidx. Y contains the detection results
for the CUT cells.

Y = step(detector, X, cutidx,K) also specifies a threshold factor, K, for setting the
detection threshold. This syntax applies when the ThresholdFactor property of the
detector is set to ' Input port"'.

[Y,th] = step() also returns the detection threshold, th, applied to detected
cells under test. To enable this syntax, set the ThresholdOQutputPort property to true.

[Y,noise] = step() also returns the estimated noise power, noise, applied to
detected cells under test. To enable this syntax, set the NoisePowerQutputPort
property to true.

step

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

detector — Two-dimensional CFAR detector
phased.CFARDetector2D System object

Two-dimensional CFAR detector, specified as a phased.CFARDetector2D System object.

X — Input image
real M-by-N matrix | real M-by-N-by-P array

Input image, specified as a real M-by-N matrix or a real M-by-N-by-P array. M and N
represent the rows and columns of a matrix. Each page is an independent 2-D signal.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

Example: [1,1;2.5,1;0.5,0.1]
Data Types: single | double

cutidx — Test cells
2-by-D matrix of positive integers

Test cells, specified as a 2-by-D matrix of positive integers, where D is the number of test
cells. Each column of cutidx specifies the row and column indices of a CUT cell. The
same indices apply to all pages in the input array. You must restrict the locations of CUT
cells so that their training regions lie completely within the input images.

Example: [10,15;11,15;12,15]
Data Types: single | double

K — Detection threshold factor
positive scalar

1-251

1 Alphabetical List

1-252

Threshold factor used to calculate the detection threshold, specified as a positive scalar.

Dependencies

To enable this input argument, set the ThresholdFactor property of the detector object
to '"Input port'

Data Types: single | double

Output Arguments

Y — Detection results
L-by-P logical matrix

Detection results, whose format depends on the OutputFormat property

* When OutputFormatis 'Cut result', Y is a D-by-P matrix containing logical
detection results for cells under test. D is the length of cutidx and P is the number of
pages of X. The rows of Y correspond to the rows of cutidx. For each row, Y contains
1 in a column if there is a detection in the corresponding cell in X. Otherwise, Y
contains a 0.

* When QutputFormat is 'Detection report', Y is a K-by-L matrix containing
detections indices. K is the number of dimensions of X. L is the number of detections
found in the input data. When X is a matrix, Y contains the row and column indices of
each detection in X in the form [detrow;detcol]. When X is an array, Y contains the
row, column, and page indices of each detection in X in the form
[detrow;detcol;detpage]. When the NumDetectionsSource property is set to
'"Property’, L equals the value of the NumDetections property. If the number of
actual detections is less than this value, columns without detections are set to NaN.

Data Types: single | double

th — Computed detection threshold
real-valued matrix

Computed detection threshold for each detected cell, returned as a real-valued matrix. Th
has the same dimensions as Y.

* When OutputFormatis 'CUT result’, Th returns the detection threshold whenever
an element of Y is 1 and NaN whenever an element of Y is 0.

step

* When QutputFormat is 'Detection index', th returns a detection threshold for
each corresponding detection in Y. When the NumDetectionsSource property is set
to 'Property’, L equals the value of the NumDetections property. If the number of
actual detections is less than this value, columns without detections are set to NaN.

Dependencies
To enable this output argument, set the ThresholdOutputPort to true.
Data Types: single | double

noise — Estimated noise power
real-valued matrix

Estimated noise power for each detected cell, returned as a real-valued matrix. noise
has the same dimensions as Y.

* When QutputFormatis 'CUT result', noise returns the noise power whenever an
element of Y is 1 and NaN whenever an element of Y is 0.

* When QutputFormat is 'Detection index', noise returns a noise power for each
corresponding detection in Y. When the NumDetectionsSource property is set to
'"Property’, L equals the value of the NumDetections property. If the number of
actual detections is less than this value, columns without detections are set to NaN.

Dependencies

To enable this output argument, set the NoisePowerOutputPort to true.

Data Types: single | double

Examples

Set 2-D CFAR Threshold for Noise-Only Data

This example shows how to set a 2-D CFAR threshold based upon a required probability of
false alarm (pfa).

Note: You can replace each call to the function with the equivalent step syntax. For
example, replace myObject (x) with step(myObject, x).

Perform cell-averaging CFAR detection on a 41-by-41 matrix of cells containing Gaussian
noise. Estimate the empirical pfa and compare it to the required pfa. To get a good

1-253

1 Alphabetical List

estimate, perform this simulation on 1000 similar matrices. First, set a threshold using
the required pfa. In this case, there are no targets and the pfa can be estimated from the
number of cells that exceed the threshold. Assume that the data is processed through a
square-law detector and that no pulse integration is performed. Use a training-cell band
of 3 cells in width and 4 cells in height. Use a guard band of 3 cells in width and 2 cells in
height to separate the cells under test (CUT) from the training cells. Specify a required

pfa of 5.0e-4.

p = 5e-4;

rs = RandStream.create('mt19937ar', 'Seed',5);
N = 41;

ntrials = 1000;

detector = phased.CFARDetector2D('TrainingBandSize"', [4,3],
'"ThresholdFactor', 'Auto', 'GuardBandSize',[2,3], ...
"ProbabilityFalseAlarm',p, 'Method', 'SOCA', 'ThresholdOutputPort', true);

Create a 41-by-41 image containing random complex data. Then, square the data to
simulate a square-law detector.

x = 2/sqrt(2)*(randn(rs,N,N,ntrials) + li*randn(rs,N,N,ntrials));
X2 = abs(x).”2;

Process all the cells in each image. To do this, find the row and column of each CUT cell
whose training region falls entirely within each image.

Ngc = detector.GuardBandSize(2);
Ngr = detector.GuardBandSize(1l);
Ntc = detector.TrainingBandSize(2);
Ntr = detector.TrainingBandSize(1);

cutidx = [];
colstart = Ntc + Ngc + 1;
colend = N - (Ntc + Ngc);
rowstart = Ntr + Ngr + 1;
rowend = N - (Ntr + Ngr);
for m = colstart:colend
for n = rowstart:rowend
cutidx = [cutidx, [n;m]];
end
end
ncutcells = size(cutidx,2);

Display the CUT cells.

cutimage = zeros(N,N);
for k = 1l:ncutcells

1-254

step

cutimage(cutidx(1,k),cutidx(2,k)) = 1;
end
imagesc(cutimage)
axis equal

15

201

30r

35

40 |

45

Perform the detection on all CUT cells. Return the detection classification and the
threshold used to classify the cell.

[dets,th] = detector(x2,cutidx);
Find and display an image with a false alarm for illustration.

di = [];
for k = 1l:ntrials

1-255

1 Alphabetical List

1-256

d = dets(:,k);
if (any(d) > 0)
di = [di,k];

end

end

idx = di(1);

detimg = zeros(N,N);

for k = 1l:ncutcells
detimg(cutidx(1,k),cutidx(2,k)) = dets(k,idx);

end

imagesc(detimg)

axis equal

15

30 r

40 r

Compute the empirical pfa.

45

step

pfa sum(dets(:))/ntrials/ncutcells

4.5898e-04

pfa
The empirical and specified pfa agree.

Display the average empirical threshold value over all images.
mean(th(:))
ans = 31.7139

Compute the theoretical threshold factor for the required pfa.

threshfactor = npwgnthresh(p,1, 'noncoherent');
threshfactor = 10"~ (threshfactor/10);
disp(threshfactor)

7.6009

The theoretical threshold factor multiplied by the noise variance should agree with the
measured threshold.

noisevar = mean(x2(:));
disp(threshfactor*noisevar);

30.4118

The theoretical threshold and empirical threshold agree to within an acceptable
difference.

Detect Targets in Background Noise

Perform cell-averaging CFAR detection on a 41-by-41 matrix of cells containing five
closely-spaced targets in Gaussian noise. Perform this detection on a simulation of 1000
images. Use two detectors with different guard band regions. Set the thresholds manually
using the Custom threshold factor. Assume that the data is processed through a square
law-detector and that no pulse integration is performed. Use a training cell band of 2 cells
in width and 2 cells in height. For the first detector, use a guard band of 1 cell all around
to separate the CUT cells from the training cells. For the second detector, use a guard
band of 8 cells all around.

1-257

1 Alphabetical List

1-258

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object, x).

p = 5e-4;
rs = RandStream.create('mt19937ar', 'Seed',5);
N = 41;

ntrials = 1000;

Create 1000 41-by-41 images of complex random noise with standard deviation of 1.

1;
s/sqrt(2)*(randn(rs,N,N,ntrials) + li*randn(rs,N,N,ntrials));

(2]
I

X

Set the target cells values to 1.5. Then, square the cell values.

Display the target cells.
N

=
>

~-

xtgt = zeros(
xtgt(23,20,:)
xtgt(23,18,:)
xtgt(23,23,:)
()

)

)

~e ~

.-~

xtgt (20,22,
xtgt (21,18,
imagesc(xtgt
axis equal
axis tight

~-

step

Set the CUT cells to be the target cells.

cutidx(1,1) = 23;
cutidx(2,1) = 20;
cutidx(1,2) = 23;
cutidx(2,2) = 18;
cutidx(1,3) = 23;
cutidx(2,3) = 23;
cutidx(1,4) = 20;
cutidx(2,4) = 22;
cutidx(1,5) = 21;
cutidx(2,5) = 18;

1-259

1 Alphabetical List

1-260

Perform the detection on all CUT cells using two CFAR 2-D detectors. The first detector
has a small guard band region. The training region can include neighboring targets which
can affect the computation of the noise power. The second detector has a larger guard
band region, which precludes target cells from being used in the noise computation.

Create the two CFAR detectors.

detectorl = phased.CFARDetector2D('TrainingBandSize',[2,2],
'GuardBandSize',[1,1], 'ThresholdFactor', 'Custom', '"Method','CA"',
'CustomThresholdFactor',2, 'ThresholdOutputPort', true);

detector2 = phased.CFARDetector2D('TrainingBandSize',[2,2],
'GuardBandSize', [8,8], 'ThresholdFactor', 'Custom', '"Method','CA"',
'CustomThresholdFactor',2, 'ThresholdOutputPort', true);

Return the detection classifications and the thresholds used to classify the cells. Then,
compute the probabilities of detection.

[detsl,thl] = detectorl(x2,cutidx);
ndets = numel(detsl(:));
pdl = sum(detsl(:))/ndets

pdl = 0.6416

[dets2,th2] = detector2(x2,cutidx);
pd2 = sum(dets2(:))/ndets

pd2 = 0.9396

The detector with the larger guard-band region has a higher pfa because the noise is
more accurately estimated.

See Also
phased.CFARDetector

Introduced in R2016b

phased.Collector

phased.Collector

Package: phased

Narrowband signal collector

Description

The phased.Collector System object implements a narrowband signal collector. A
collector converts incident narrowband wave fields arriving from specified directions into
signals to be further processed. Wave fields are incident on antenna and microphone
elements, sensor arrays, or subarrays. The object collects signals in one of two ways
controlled by the Wavefront property.

» If the Wavefront property is set to 'Plane’, the collected signals at each element or
subarray are formed from the coherent sum of all incident plane wave fields sampled
at each array element or subarray.

» If the Wavefront property is set to 'Unspecified’, the collected signals are formed
from an independent field incident on each individual sensor element.

You can use this object to

* model arriving signals as polarized or nonpolarized fields depending upon whether the
element or array supports polarization and the value of the Polarization property.
Using polarization, you can receive a signal as a polarized electromagnetic field, or
receive two independent signals using dual (i.e. orthogonal) polarization directions.

* model incoming acoustic fields by using nonpolarized microphone and sonar
transducer array elements and by setting the “Polarization” on page 1-0 to 'None"’.
You must also set the PropagationSpeed to a value appropriate for the medium.

» collect fields at subarrays created by the phased.ReplicatedSubarray and
phased.PartitionedArray objects. You can steer all subarrays in the same
direction using the steering angle argument, STEERANG, or steer each subarray in a
different direction using the subarray element weights argument, WS. You cannot set
the Wavefront property to 'Unspecified’ for subarrays.

To collect arriving signals at the elements or arrays:

1-261

1 Alphabetical List

1-262

1 Create the phased.Collector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

collector
collector

phased.Collector
phased.Collector(Name,Value)

Description

collector = phased.Collector creates a narrowband signal collector object,
collector, with default property values.

collector = phased.Collector(Name,Value) creates a narrowband signal
collector with each property Name set to a specified Value. You can specify additional
name-value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN). Enclose
each property name in single quotes.

Example: collector =

phased.collector('Sensor',phased.URA, 'OperatingFrequency',300e6) sets
the sensor array to a uniform rectangular array (URA) with default URA property values.
The beamformer has an operating frequency of 300 MHz.

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

phased.Collector

Sensor — Sensor element or sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox
Sensor or array

Sensor element or sensor array, specified as a System object belonging to Phased Array
System Toolbox. A sensor array can contain subarrays.

Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed"').
See physconst for more information.

Example: 3e8

Data Types: double

OperatingFrequency — Operating frequency

300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9

Data Types: double

Wavefront — Type of incoming wavefront
'Plane’ (default) | 'Unspecified'’

The type of incoming wavefront, specified as 'Plane' or 'Unspecified':

* 'Plane' — input signals are multiple plane waves impinging on the entire array. Each
plane wave is received by all collecting elements.

* ‘'Unspecified' — collected signals are independent fields incident on individual
sensor elements. If the Sensor property is an array that contains subarrays, you
cannot set the Wavefront property to 'Unspecified’.

Data Types: char

SensorGainMeasure — Specify sensor gain
'dB' (default) | 'dBi'

1-263

1 Alphabetical List

Sensor gain measure, specified as 'dB' or 'dBi’.

* When you set this property to 'dB’', the input signal power is scaled by the sensor
power pattern (in dB) at the corresponding direction and then combined.

* When you set this property to 'dBi', the input signal power is scaled by the
directivity pattern (in dBi) at the corresponding direction and then combined. This
option is useful when you want to compare results with the values predicted by the
radar equation that uses dBi to specify the antenna gain. The computation using the
'dBi' option is expensive as it requires an integration over all directions to compute
the total radiated power of the sensor.

Dependencies

To enable this property, set the Wavefront property to 'Plane’.
Data Types: char

Polarization — Polarization configuration
"None' (default) | 'Combined"’ | 'Dual'’

Polarization configuration, specified as 'None', 'Combined’, or 'Dual'. When you set
this property to 'None', the incident fields are considered scalar fields. When you set this
property to 'Combined', the incident fields are polarized and represent a single arriving
signal whose polarization reflects the sensor's inherent polarization. When you set this
property to 'Dual’, the H and V polarization components of the fields are independent
signals.

Example: 'Dual'’

Data Types: char

WeightsInputPort — Enable weights input
false (default) | true

Enable weights input, specified as false or true. When true, use the object input
argument W to specify weights. Weights are applied to individual array elements (or at the
subarray level when subarrays are supported).

Data Types: Llogical

1-264

phased.Collector

Usage

Syntax

Y = collector(X,ANG)

Y = collector(X,ANG, LAXES)
[YH,YV] = collector(X,ANG, LAXES)
[1= collector(,W)

[1 = collector(__ ,STEERANG)
[1 = collector(___ ,WS)
Description

Y = collector(X,ANG) collects the signals, X, arriving from the directions specified by
ANG. Y contains the collected signals.

Y = collector(X,ANG,LAXES) also specifies LAXES as the local coordinate system
axes directions. To use this syntax, set the Polarization property to 'Combined".

[YH,YV] = collector(X,ANG,LAXES) returns an H-polarization component of the
field, YH, and a V-polarization component, YV. To use this syntax, set the Polarization
property to 'Dual’.

[] = collector(,W) also specifies W as array element or subarray weights.

To use this syntax, set the WeightsInputPort property to true.

[1 = collector(,STEERANG) also specifies STEERANG as the subarray
steering angle. To use this syntax, set the Sensor property to an array that supports
subarrays and set the SubarraySteering property of that array to either 'Phase' or
'Time'.

[1 = collector(__ ,WS) also specifies WS as the weights applied to each
element within each subarray. To use this syntax, set the Sensor property to an array that
supports subarrays and set the SubarraySteering of that array to 'Custom'.

Input Arguments

X — Arriving signals
complex-valued M-by-L matrix | complex-valued 1-by-L cell array of structures

1-265

1 Alphabetical List

1-266

Arriving signals, specified as a complex-valued M-by-L matrix or complex-valued 1-by-L
cell array of structures. M is the number of signal samples and L is the number of arrival
angles. This argument represents the arriving fields.

» Ifthe Polarization property value is set to 'None', X is an M-by-L matrix.

» Ifthe Polarization property value is set to 'Combined' or 'Dual’', Xis a 1-by-L
cell array of structures. Each cell corresponds to a separate arriving signal. Each
struct contains three column vectors containing the X, Y, and Z components of the
polarized fields defined with respect to the global coordinate system.

The size of the first dimension of the input matrix can vary to simulate a changing signal
length. A size change can occur, for example, in the case of a pulse waveform with
variable pulse repetition frequency.

Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.

Data Types: double
Complex Number Support: Yes

ANG — Arrival directions of signals
real-valued 2-by-L matrix

Arrival directions of signals, specified as a real-valued 2-by-L matrix. Each column
specifies an arrival direction in the form [AzimuthAngle;ElevationAngle]. The
azimuth angle must lie between -180° and 180°, inclusive. The elevation angle must lie
between -90° and 90°, inclusive. When the Wavefront property is false, the number of
angles must equal the number of array elements, N. Units are in degrees.

Example: [30,20;45,0]
Data Types: double

LAXES — Local coordinate system
real-valued 3-by-3 orthogonal matrix

Local coordinate system, specified as a real-valued 3-by-3 orthogonal matrix. The matrix
columns specify the local coordinate system's orthonormal x, y, and z axes with respect to
the global coordinate system.

Example: rotx(30)

phased.Collector

Dependencies

To enable this argument, set the Polarization property to 'Combined' or 'Dual’.

Data Types: double

W — Element or subarray weights
N-by-1 column vector

Element or subarray weights, specified as a complex-valued N-by-1 column vector where
N is the number of array elements (or subarrays when the array supports subarrays).

Dependencies

To enable this argument, set the WeightsIinputPort property to true.

Data Types: double
Complex Number Support: Yes

WS — Subarray element weights
complex-valued Ngg-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued Ngg-by-N matrix or 1-by-N cell

array where N is the number of subarrays. These weights are applied to the individual
elements within a subarray.

1-267

1 Alphabetical List

Subarray element weights

Sensor Array

Subarray weights

phased.ReplicatedSubarray

All subarrays have the same dimensions
and sizes. Then, the subarray weights form
an Ngg-by-N matrix. Ngg is the number of
elements in each subarray and N is the
number of subarrays. Each column of WS
specifies the weights for the corresponding
subarray.

phased.PartitionedArray

Subarrays may not have the same
dimensions and sizes. In this case, you can
specify subarray weights as

* an Ngg-by-N matrix, where Ngg is now
the number of elements in the largest
subarray. The first Q entries in each
column are the element weights for the
subarray where Q is the number of
elements in the subarray.

* a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column
vectors have lengths equal to the
number of elements in the
corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and
set the SubarraySteering property of the array to 'Custom'.

Data Types: double
Complex Number Support: Yes

STEERANG — Subarray steering angle

real-valued 2-by-1 vector

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuthAngle;elevationAngle]. The azimuth angle must be between -180° and

1-268

phased.Collector

180°, inclusive. The elevation angle must be between -90° and 90°, inclusive. Units are in
degrees.

Example: [20;15]

Dependencies

To enable this argument, set the Sensor property to an array that supports subarrays
and set the SubarraySteering property of that array to either 'Phase' or 'Time'

Data Types: double

Output Arguments

Y — Collected signal
complex-valued M-by-N matrix

Collected signal, returned as a complex-valued M-by-N matrix. M is the length of the
input signal. N is the number of array elements (or subarrays when subarrays are
supported). Each column corresponds to the signal collected by the corresponding array
element (or corresponding subarrays when subarrays are supported).

Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined’.

Data Types: double

YH — Collected horizontal polarization signal
complex-valued M-by-N matrix

Collected horizontal polarization signal, returned as a complex-valued M-by-N matrix. M
is the length of the input signal. N is the number of array elements (or subarrays when
subarrays are supported). Each column corresponds to the signal collected by the
corresponding array element (or corresponding subarrays when subarrays are
supported).

Dependencies

To enable this argument, set the Polarization property to 'Dual’.

Data Types: double

YV — Collected vertical polarization signal
complex-valued M-by-N matrix

1-269

1 Alphabetical List

Collected horizontal polarization signal, returned as a complex-valued M-by-N matrix. M
is the length of the input signal. N is the number of array elements (or subarrays when
subarrays are supported). Each column corresponds to the signal collected by the
corresponding array element (or corresponding subarrays when subarrays are
supported).

Dependencies

To enable this argument, set the Polarization property to 'Dual’.

Data Types: double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Collect Wideband Signal at Single Antenna

Use the phased.Collector System object™ to construct a signal arriving at a single
isotropic antenna from 10° azimuth and 30° elevation.

antenna = phased.IsotropicAntennaElement;
collector = phased.Collector('Sensor',antenna);
x = [1;0;-1];

incidentAngle = [10;30];

y = collector(x,incidentAngle)

y = 3x1

1-270

phased.Collector

=

Collect Signal at Uniform Linear Array

Collect a far-field signal arriving at a 3-element uniform linear array (ULA) of isotropic
antenna elements.

antenna = phased.ULA('NumElements',3);

collector = phased.Collector('Sensor',antenna, 'OperatingFrequency',1e9);
x = [1;0;-1];

incidentAngle = [10 30]';

y = collector(x,incidentAngle)

y = 3x3 complex

-0.0051 - 1.00001 1.0000 + 0.00001 -0.0051 + 1.00001
0.0000 + 0.00001i 0.0000 + 0.00001i 0.0000 + 0.00001
0.0051 + 1.0000i -1.0000 + 0.00001i 0.0051 - 1.0000i1

Collect Different Signals at Array Elements

Collect different signals at a three-element array. Each input signal comes from a
different direction.

array = phased.ULA('NumElements',3);
collector = phased.Collector('Sensor',array, 'OperatingFrequency',1e9, ...
'Wavefront', 'Unspecified');

Each column is a signal for one element

X rand(10,3)

X 10x3

0.8147 0.1576 0.6557
0.9058 0.9706 0.0357

1-271

1 Alphabetical List

0.1270 0.9572 0.8491
0.9134 0.4854 0.9340
0.6324 0.8003 0.6787
0.0975 0.1419 0.7577
0.2785 0.4218 0.7431
0.5469 0.9157 0.3922
0.9575 0.7922 0.6555
0.9649 0.9595 0.1712

Specify three incident angles.

incidentAngles = [10 0; 20 5; 45 2]°';
y = collector(x,incidentAngles)

y = 10x3
0.8147 0.1576 0.6557
0.9058 0.9706 0.0357
0.1270 0.9572 0.8491
0.9134 0.4854 0.9340
0.6324 0.8003 0.6787
0.0975 0.1419 0.7577
0.2785 0.4218 0.7431
0.5469 0.9157 0.3922
0.9575 0.7922 0.6555
0.9649 0.9595 0.1712

Collect Plane Wave at ULA

Construct a 4-element uniform linear array (ULA). The array operating frequency is 1
GHz. The array element spacing is one half the corresponding wavelength. Model the
collection of a 200 Hz sinusoid from the far field incident on the array at 45° azimuth and
10° elevation.

Create the array.
fc = 1e9;

lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',4, ' 'ElementSpacing',lambda/2);

1-272

phased.Collector

Create the sinusoid signal.

t
X

linspace(0,1,1e3);
COS (2*pi*200*t)';

Construct the collector object and obtain the received signal.

collector = phased.Collector('Sensor',array,
'PropagationSpeed’',physconst('LightSpeed'), 'Wavefront', 'Plane’,
'OperatingFrequency’', fc);

incidentangle = [45;10];

receivedsig = collector(x,incidentangle);

Measure Target Scattering Matrix Using Dual Polarization

Use a dual-polarization system to obtain target scattering information. Simulate a
transmitter and receiver where the vertical and horizontal components are transmitted
successively using the input ports of the transmitter. The signals from the two
polarization output ports of the receiver is then used to determine the target scattering
matrix.

scmat = [0 1i; 1i 2];

radiator = phased.Radiator('Sensor’, .
phased.CustomAntennaElement('SpecifyPolarizationPattern',true),
'Polarization', 'Dual');

target = phased.RadarTarget('EnablePolarization',true, 'ScatteringMatrix"’,
scmat);

collector = phased.Collector('Sensor', .

phased.CustomAntennaElement('SpecifyPolarizationPattern',true),

'Polarization', 'Dual');

1;

1;

xh
XV

Transmit a horizontal component and display the reflected Shh and Svh polarization
components.

X = radiator(xh,0,[0;0],eye(3));
xrefl = target(x,[0;0],eye(3));
[Shh,Svh] = collector(xrefl,[0;0],eye(3))

Shh =0

Svh = 0.0000 + 3.54741

1-273

1 Alphabetical List

1-274

Transmit a vertical component and display the reflected Shv and Svv polarization
components.

X = radiator(0,xv,[0;0],eye(3));
xrefl = target(x,[0;0],eye(3));
[Shv,Svv] = collector(xrefl,[0;0],eye(3))

Shv = 0.0000 + 3.54741
Svv = 7.0947
Algorithms

If the Wavefront property value is 'Plane', phased.Collector collects each plane
wave signal using the phase approximation of the time delays across collecting elements
in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector collects each
channel independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

phased.Collector

See Also
phased.Radiator | phased.WidebandCollector | phased.WidebandRadiator

Introduced in R2012a

1-275

1 Alphabetical List

1-276

step

System object: phased.Collector
Package: phased

Collect signals

Syntax

Y = step(H, X, ANG)

Y = step(H, X, ANG, LAXES)

Y = step(H,X,ANG,WEIGHTS)

Y = step(H,X,ANG, STEERANGLE)

Y = step(H,X,ANG, LAXES,WEIGHTS, STEERANGLE)
Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Y = step(H,X,ANG) collects signals X arriving from directions ANG. The collection
process depends on the Wavefront property of H, as follows:

+ IfWavefront has the value 'Plane’, each collecting element collects all the far field
signals in X. Each column of Y contains the output of the corresponding element in
response to all the signals in X.

+ IfWavefront has the value 'Unspecified’, each collecting element collects only
one impinging signal from X. Each column of Y contains the output of the
corresponding element in response to the corresponding column of X. The
"Unspecified' option is available when the Sensor property of H does not contain
subarrays.

step

Y = step(H,X,ANG, LAXES) uses LAXES as the local coordinate system axes directions.
This syntax is available when you set the EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This syntax is
available when you set the WeightsInputPort property to true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle.
This syntax is available when you configure H so that H.Sensor is an array that contains
subarrays and H.Sensor.SubarraySteering is either 'Phase' or 'Time".

Y = step(H,X,ANG, LAXES,WEIGHTS, STEERANGLE) combines all input arguments.
This syntax is available when you configure H so that H.WeightsInputPort is true,

H.Sensor is an array that contains subarrays, and H.Sensor.SubarraySteering is
either 'Phase' or 'Time"'.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments
H

Collector object.

X

Arriving signals. Each column of X represents a separate signal. The specific
interpretation of X depends on the Wavefront property of H.

Wavefront Property |Description
Value

'Plane’ Each column of X is a far field signal.

1-277

1 Alphabetical List

Wavefront Property |Description
Value

'Unspecified’ Each column of X is the signal impinging on the corresponding
element. In this case, the number of columns in X must equal the
number of collecting elements in the Sensor property.

+ Ifthe EnablePolarization property value is set to false, X is a matrix. The
number of columns of the matrix equals the number of separate signals.

The size of the first dimension of the input matrix can vary to simulate a changing
signal length. A size change can occur, for example, in the case of a pulse waveform
with variable pulse repetition frequency.

» Ifthe EnablePolarization property value is set to true, X is a row vector of
MATLAB struct type. The dimension of the struct array equals the number of
separate signals. Each struct member contains three column-vector fields, X, Y, and
Z, representing the x, y, and z components of the polarized wave vector signals in the
global coordinate system.

The size of the first dimension of the matrix fields within the struct can vary to
simulate a changing signal length such as a pulse waveform with variable pulse
repetition frequency.

ANG

Incident directions of signals, specified as a two-row matrix. Each column specifies the
incident direction of the corresponding column of X. Each column of ANG has the form
[azimuth; elevation], in degrees. The azimuth angle must be between -180 and 180
degrees, inclusive. The elevation angle must be between -90 and 90 degrees, inclusive.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns specify the local
coordinate system's orthonormal x, y, and z axes, respectively. Each axis is specified in
terms of [x;y; z] with respect to the global coordinate system. This argument is only
used when the EnablePolarization property is set to true.

WEIGHTS
Vector of weights. WEIGHTS is a column vector of length M, where M is the number of

collecting elements.

1-278

step

Default: ones(M, 1)
STEERANGLE

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuth; elevation], in degrees. The azimuth angle must be between -180 and 180
degrees, inclusive. The elevation angle must be between -90 and 90 degrees, inclusive.

Output Arguments

Y

Collected signals. Each column of Y contains the output of the corresponding element.
The output is the response to all the signals in X, or one signal in X, depending on the
Wavefront property of H.

Examples

Collect Plane Wave at ULA

Construct a 4-element uniform linear array (ULA). The array operating frequency is 1
GHz. The array element spacing is one half the corresponding wavelength. Model the
collection of a 200 Hz sinusoid from the far field incident on the array at 45° azimuth and
10° elevation.

Create the array.
fc = 1e9;

lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',4, 'ElementSpacing',lambda/2);

Create the sinusoid signal.

t
X

linspace(0,1,1e3);
COS (2*pi*200*t)';

Construct the collector object and obtain the received signal.

collector = phased.Collector('Sensor',array, .
'"PropagationSpeed',physconst('LightSpeed'), 'Wavefront', 'Plane',

1-279

1 Alphabetical List

'OperatingFrequency', fc);
incidentangle = [45;10];
receivedsig = collector(x,incidentangle);

Algorithms
If the Wavefront property value is 'Plane', phased.Collector collects each plane

wave signal using the phase approximation of the time delays across collecting elements
in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector collects each
channel independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

1-280

clusterDBSCAN

clusterDBSCAN

Data clustering

Description

clusterDBSCAN clusters data points belonging to a P-dimensional feature space using
the density-based spatial clustering of applications with noise (DBSCAN) algorithm. The
clustering algorithm assigns points that are close to each other in feature space to a
single cluster. For example, a radar system can return multiple detections of an extended
target that are closely spaced in range, angle, and Doppler. clusterDBSCAN assigns
these detections to a single detection.

The DBSCAN algorithm assumes that clusters are dense regions in data space
separated by regions of lower density and that all dense regions have similar densities.

To measure density at a point, the algorithm counts the number of data points in a
neighborhood of the point. A neighborhood is a P-dimensional ellipse (hyperellipse) in
the feature space. The radii of the ellipse are defined by the P-vector €. € can be a
scalar, in which case, the hyperellipse becomes a hypersphere. Distances between
points in feature space are calculated using the Euclidean distance metric. The
neighborhood is called an e-neighborhood. The value of ¢ is defined by the Epsilon
property. Epsilon can either be a scalar or P-vector:

* Avector is used when different dimensions in feature space have different units.

* A scalar applies the same value to all dimensions.

Clustering starts by finding all core points. If a point has a sufficient number of points
in its e-neighborhood, the point is called a core point. The minimum number of points
required for a point to become a core point is set by the MinNumPoints property.

The remaining points in the e-neighborhood of a core point can be core points
themselves. If not, they are border points. All points in the e-neighborhood are called
directly density reachable from the core point.

If the e-neighborhood of a core point contains other core points, the points in the e-
neighborhoods of all the core points merge together to form a union of ¢-
neighborhoods. This process continues until no more core points can be added.

1-281

1 Alphabetical List

1-282

+ All points in the union of e-neighborhoods are density reachable from the first core
point. In fact, all points in the union are density reachable from all core points in
the union.

+ All points in the union of e-neighborhoods are also termed density connected even
though border points are not necessarily reachable from each other. A cluster is a
maximal set of density-connected points and can have an arbitrary shape.

* Points that are not core or border points are noise points. They do not belong to any
cluster.

* The clusterDBSCAN object can estimate € using a k-nearest neighbor search, or you
can specify values. To let the object estimate ¢, set the EpsilonSource property to
"Auto’.

* The clusterDBSCAN object can disambiguate data containing ambiguities. Range and
Doppler are examples of possibly ambiguous data. Set EnableDisambiguation
property to true to disambiguate data.

To cluster detections:

1 Create the clusterDBSCAN object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

clusterer = clusterDBSCAN

clusterer = clusterDBSCAN(Name,Value)

Description

clusterer = clusterDBSCAN creates a clusterDBSCAN object, clusterer, object
with default property values.

clusterer = clusterDBSCAN(Name,Value) creates a clusterDBSCAN object,
clusterer, with each specified property Name set to the specified Value. You can

clusterDBSCAN

specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN). Any unspecified properties take default values. For
example,

clusterer = clusterDBSCAN('MinNumPoints',3, 'Epsilon',2,
"EnableDisambiguation’', true, 'AmbiguousDimension',[1 2]);

creates a clusterer with the EnableDisambiguation property set to true and the
AmbiguousDimensionsetto [1,2].

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

EpsilonSource — Source of epsilon
'Property' (default) | 'Auto'’

Source of epsilon values defining an e-neighborhood, specified as 'Property' or
"Auto’.

* When you set the EpsilonSource property to 'Property’, € is obtained from the
Epsilon property.
* When you set the EpsilonSource property to 'Auto’, € is estimated automatically
using a k-nearest neighbor (k-NN) search over a range of k values from Kk, t0 Kpax.
kmin = MinNumPoints — 1
kmax = MaxNumPoints — 1

The subtraction of one is needed because the number of neighbors of a point does not
include the point itself, whereas MinNumPoints and MaxNumPoints refer to the total
number of points in a neighborhood.

Data Types: char | string

1-283

1 Alphabetical List

1-284

Epsilon — Radius for neighborhood search
10.0 (default) | positive scalar | positive, real-valued 1-by-P row vector

Radius for a neighborhood search, specified as a positive scalar or positive, real-valued 1-
by-P row vector. P is the number of features in the input data, X.

Epsilon defines the radii of an ellipse around any point to create an e-neighborhood.
When Epsilon is a scalar, the same radius applies to all feature dimensions. You can
apply different epsilon values for different features by specifying a positive, real-valued 1-
by-P row vector. A row vector creates a multidimensional ellipse (hyperellipse) search
area, useful when the data features have different physical meanings, such as range and
Doppler. See “Estimate Epsilon” on page 1-304 for more information about this property.

You can use the clusterDBSCAN.estimateEpsilon or
clusterDBSCAN.discoverClusters object functions to help estimate a scalar value
for epsilon.

Example: [11 21.0]

Tunable: Yes

Dependencies

To enable this property, set the EpsilonSource property to 'Property".
Data Types: double

MinNumPoints — Minimum number of points required for cluster
3 (default) | positive integer

Minimum number of points in an e-neighborhood of a point for that point to become a
core point, specified as a positive integer. See “Choosing the Minimum Number of Points”
on page 1-307 for more information. When the object automatically estimates epsilon
using a k-NN search, the starting value of k (Ky;,) is MinNumPoints - 1.

Example: 5
Data Types: double

MaxNumPoints — Set end of k-NN search range
10 (default) | positive integer

Set end of k-NN search range, specified as a positive integer. When the object
automatically estimates epsilon using a k-NN search, the ending value of k (k) is
MaxNumPoints - 1.

clusterDBSCAN

Example: 13

Dependencies
To enable this property, set the EpsilonSource property to 'Auto’.
Data Types: double

EpsilonHistoryLength — Length of cluster threshold epsilon history
10 (default) | positive integer

Length of the stored epsilon history, specified as a positive integer. When set to one, the
history is memory-less, meaning that each epsilon estimate is immediately used and no
moving-average smoothing occurs. When greater than one, epsilon is averaged over the
history length specified.

Example: 5

Dependencies

To enable this property, set the EpsilonSource property to 'Auto’.
Data Types: double

EnableDisambiguation — Enable disambiguation of dimensions
false (default) | true

Switch to enable disambiguation of dimensions, specified as false or true. When true,
clustering can occur across boundaries defined by the input amblims at execution. Use
the AmbiguousDimensions property to specify the column indices of X in which
ambiguities can occur. You can disambiguate up to two dimensions. Turning on
disambiguation is not recommended for large data sets.

Data Types: logical

AmbiguousDimension — Indices of ambiguous dimensions
1 (default) | positive integer | 1-by-2 vector of positive integers

Indices of ambiguous dimensions, specified as a positive integer or 1-by-2 vector of
positive integers. This property specifies the column of X in which to apply
disambiguation. A positive integer indicates a single ambiguous dimension in the input
data matrix X. A 1-by-2 row vector specifies two ambiguous dimensions. The size and
order of AmbiguousDimension must be consistent with the object input amblims.

Example: [3 4]

1-285

1 Alphabetical List

1-286

Dependencies

To enable this property, set the EnableDisambiguation property to true.

Data Types: double
Usage

Syntax

idx = clusterer(X)

[idx,clusterids] = clusterer(X)

[1] clusterer(X,amblims)

[] clusterer(X,update)
clusterer(X,amblims,update)

[1

Description

idx = clusterer(X) clusters the points in the input data, X. idx contains a list of IDs
identifying the cluster to which each row of X belongs. Noise points are assigned as '-1'.

[idx,clusterids] = clusterer(X) also returns an alternate set of cluster IDs,
clusterids, for use in the phased.RangeEstimator and
phased.DopplerEstimator objects. clusterids assigns a unique ID to each noise
point.

[1 = clusterer(X,amblims) also specifies the minimum and maximum
ambiguity limits, amblims, to apply to the data.

To enable this syntax, set the EnableDisambiguation property to true.

[1 = clusterer(X,update) automatically estimates epsilon from the input data
matrix, X, when update is set to true. The estimation uses a k-NN search to create a set
of search curves. For more information, see “Estimate Epsilon” on page 1-320. The
estimate is an average of the L most recent Epsilon values where L is specified in
EpsilonHistoryLength

To enable this syntax, set the EpsilonSource property to 'Auto’, optionally set the
MaxNumPoints property, and also optionally set the EpsilonHistoryLength property.

clusterDBSCAN

[] = clusterer(X,amblims,update) sets ambiguity limits and estimates
epsilon when update is set to true. To enable this syntax, set EnableDisambiguation
to true and set EpsilonSource to 'Auto’.

Input Arguments

X — Input feature data
real-valued N-by-P matrix

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to
feature points in a P-dimensional feature space. The P columns contain the values of the
features over which clustering takes place. The DBSCAN algorithm can cluster any type
of data with appropriate MinNumPoints and Epsilon settings. For example, a two-
column input can contain the xy Cartesian coordinates, or range and Doppler.

Data Types: double

amblims — Ambiguity limits
1-by-2 real-valued vector (default) | 2-by-2 real-valued matrix

Ambiguity limits, specified as a real-valued 1-by-2 vector or real-valued 2-by-2 matrix. For
a single ambiguity dimension, specify the limits as a 1-by-2 vector
[MinAmbiguityLimitDimensionl,MaxAmbiguityLimitDimensionl]. For two ambiguity
dimensions, specify the limits as a 2-by-2 matrix [MinAmbiguityLimitDimensionl,
MaxAmbiguityLimitDimensionl;
MinAmbiguityLimitDimension2,MaxAmbiguityLimitDimensionZ2]. Ambiguity limits allow
clustering across boundaries to ensure that ambiguous detections are appropriately
clustered.

The ambiguous columns of X are defined in the AmbiguousDimension property.
amblims defines the minimum and maximum ambiguity limits in the same units as the
data in the AmbiguousDimension columns of X.

Example: [0 20; -40 40]

Dependencies

To enable this argument, set EnableDisambiguation to true and set the
AmbiguousDimension property.

Data Types: double

1-287

1 Alphabetical List

1-288

update — Enable automatic update of epsilon
false (default) | true

Enable automatic update of the epsilon estimate, specified as false or true.

* When true, the epsilon threshold is first estimated as the average of the knees of k-
NN search curves. The estimate is then added to a buffer whose length L is set in the
EpsilonHistorylLength property. The final epsilon that is used is calculated as the
average of the L-length epsilon history buffer. If EpsilonHistorylLengthis setto 1,
the estimate is memory-less. Memory-less means that each epsilon estimate is
immediately used and no moving-average smoothing occurs.

* When false, a previous epsilon estimate is used. Estimating epsilon is
computationally intensive and not recommended for large data sets.

Dependencies

To enable this argument, set the EpsilonSource property to 'Auto' and specify the
MaxNumPoints property.

Data Types: double

Output Arguments

idx — Cluster indices
N-by-1 integer-valued column vector

Cluster indices, returned as an integer-valued N-by-1 column vector. idx represents the
clustering results of the DBSCAN algorithm. Positive idx values correspond to clusters
that satisfy the DBSCAN clustering criteria. A value of '-1' indicates a DBSCAN noise
point.

Data Types: double

clusterids — Alternative cluster IDs
1-by-N integer-valued row vector

Alternative cluster IDs, returned as a 1-by-N row vector of positive integers. Each value is
a unique identifier indicating a hypothetical target cluster. This argument contains unique
positive cluster IDs for all points including noise. In contrast, the idx output argument
labels noise points with '-1'. Use clusterids as the input to Phased Array System
Toolbox objects such as phased.RangeEstimator and phased.DopplerEstimator.

Data Types: double

clusterDBSCAN

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to clusterDBSCAN

clusterDBSCAN.discoverClusters Find cluster hierarchy in data
clusterDBSCAN.estimateEpsilon Estimate neighborhood clustering threshold
plot Plot clusters

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Cluster Detections in Range and Doppler

Create detections of extended objects with measurements in range and Doppler. Assume
the maximum unambiguous range is 20 m and the unambiguous Doppler span extends
from —30 Hz to 30 Hz. The data matrix is contained in the dataClusterDBSCAN.mat
file. The first column represents range, and the second column represents Doppler.

The input data contains the following extended targets and false alarms specified:

* an unambiguous target located at (10, 15)

* an ambiguous target in Doppler located at (10, — 30)

* an ambiguous target in range located at (20, 15)

* an ambiguous target in range and Doppler located at (20, 30)
» 5 false alarms

Create a clusterDBSCAN object and specify that disambiguation is not performed by
setting EnableDisambiguation to false. Solve for the cluster indices.

1-289

1 Alphabetical List

load('dataClusterDBSCAN.mat"');

clusterl = clusterDBSCAN('MinNumPoints',3, 'Epsilon',?2,
'EnableDisambiguation’', false);

idx = clusterl(x);

Use the clusterDBSCAN plot object function to display the clusters.

plot(clusterl,x,idx)

Clusters

30 r !I ‘h\-ll

] wer [[

Dimension 2
N -
[[[
T T T

P
-
T

.30k If-ll, , , ! ! [:l . . . fIﬂII

0 2 4 (5] 8 10 12 14 16 18 20
Dimension 1

The plot indicates that there are eight apparent clusters and six noise points. The
'Dimension 1' label corresponds to range and the 'Dimension 2' label corresponds to
Doppler.

1-290

clusterDBSCAN

Next, create another clusterDBSCAN object and set EnableDisambiguation to true
to specify that clustering is performed across the range and Doppler ambiguity
boundaries.

cluster2 = clusterDBSCAN('MinNumPoints"',3, 'Epsilon',?2,
'"EnableDisambiguation’',true, 'AmbiguousDimension',[1 2]);

Perform the clustering using ambiguity limits and then plot the clustering results. The
DBSCAN clustering results correctly show four clusters and five noise points. For
example, the points at ranges close to zero are clustered with points near 20 m because
the maximum unambiguous range is 20 m.

amblims = [0 maxRange; minDoppler maxDoppler];

idx = cluster2(x,amblims);
plot(cluster2,x,idx)

1-291

1 Alphabetical List

Clusters
or = EI % E
2071
prn [
1071
o
=
=]
2 or
¥
=
(]
10 |
=20
-:'H} C |*. i i i i i i i i i "rl
0 2 4 G a8 10 12 14 16 18 20
Dimension 1

Effect of Epsilon on Clustering

Cluster two-dimensional Cartesian position data using clusterDBSCAN. To illustrate how
the choice of epsilon affects clustering, compare the results of clustering with Epsilon
set to 1 and Epsilon set to 3.

Create random target data position data in xy coordinates.

x = [rand(20,2)+12; rand(20,2)+10; rand(20,2)+15];
plot(x(:,1),x(:,2),".")

1-292

clusterDBSCAN

15 S
14|]
13} T :
12t ©o]

M, - -

_,ID i i i i i
10 11 12 13 14 15 16

Create a clusterDBSCAN object with the Epsilon property set to 1 and the
MinNumPoints property set to 3.

clusterer = clusterDBSCAN('Epsilon',1, 'MinNumPoints"',3);
Cluster the data when Epsilon equals one.
idxEpsilonl = clusterer(x);

Cluster the data again but with Epsilon set to 3. You can change the value of Epsilon
because it is tunable.

clusterer.Epsilon = 3;
idxEpsilon2 = clusterer(x);

1-293

1 Alphabetical List

Plot the clustering results side-by-side. Do this by passing in the axes handles and titles
into the plot method.

hAx1l = subplot(1,2,1);
plot(clusterer,x,idxEpsilonl,

'Parent',hAx1, 'Title', 'Epsilon = 1")
hAx2 = subplot(1,2,2);
plot(clusterer,x,idxEpsilon2,
'Parent',hAx2, 'Title', 'Epsilon = 3')
Epsilon=1 Epsilon= 3
17r 17r
B
16 . 16
2
15+ . 15+
14T 14
o o
5 [] 5 [+]
2 131 » 2 131 -
fah] ‘ fa b]
E . E S
(] (]
12 E| '! 121 'a
Mr ‘:_ M1r }:}
& P
10} : 10}
Q L i i i i Q C i i i i
10 12 14 16 10 12 14 16
Dimension 1 Dimension 1

For Epsilon set to 1, three clusters appear. When Epsilon is 3, the two lower clusters
are merged into one.

1-294

clusterDBSCAN

Y
=
o

Algorithms

Clustering Algorithm
Clustering Overview

This section illustrates the basic principles of cluster formation. The figure shows points
in a two-dimensional feature space. The clusters are compact and well-separated. A few
noise points appear.

20

*
]

-10 -5 0 5 10 15 20 25

1-295

1 Alphabetical List

1-296

Clusters Formed from a Single e-Neighborhood

Clusters start from core points. The first step in the algorithm is identifying all core
points.

The figure here shows the point P; and its e-neighborhood N¢(P;). The e-neighborhood
has eight points (including itself) within a radius e. Using the MinNumPoints property
to set the threshold to 8 means that P; is a core point. The blue points that lie within
N are called border points. These border points are directly density reachable from
the core point P;.

No other points in the figure have enough neighboring points in their e-neighborhood
to become a core point. P, is not a core point because it has only five points within its
neighborhood. P, is directly density reachable from P;. The reverse is not true because
P, is not a core point. The one-way arrow connecting the two points shows this
asymmetry.

Points that fall outside N, (P;) are noise points (red) and do not belong to the cluster.

Because no other points are core points, the core point and border points are a
maximal set of density-connected points and therefore form a cluster.

Cluster of Points from Two &-Neighborhoods

The next figure shows a larger set of points containing two core points, P, and P,. P, is
a border point of P; but P, also has enough points in its own neighborhood to become
a core point. Because they are both core points, P; is directly density reachable from
P,, and P; is directly density reachable from P,. The two-way arrow connecting them
shows this symmetry.

clusterDBSCAN

s
-
i
1 -
'. . - /

\ T ,
o /
N(P1
e
—

O Core point
@ Border point

@ Noise point

1-297

1 Alphabetical List

P5 is directly density reachable from P, but not from P; (as indicated by the one-way
arrow). However, P; is called simply density reachable from P;.

Because no other points are core points, the two core points and their border points
form a maximal set of density-connected points and form one cluster.

1-298

clusterDBSCAN

O Core point
@ Border point
_ @ Noise point

1-299

1 Alphabetical List

1-300

Cluster Points in Adjacent e-Neighborhoods

This process of growing a cluster can be extended from core point to core point until
there are no more core points to add. The core points and the border points belong to
the same cluster. In general, a point P, is density reachable from point P; when there
is a chain of core points, P,P,, P, ..., P,; such that each core point P;,, is directly
density reachable from P;, and P, is directly density reachable from P, ;.

clusterDBSCAN

O Core point
@ Border point
@ Noise point

1-301

1 Alphabetical List

Density Connectivity

The next figure illustrates some properties of density connectivity.
* A cluster can have multiple branching chains, for example (P;, P,, P;, P,) and (P;, P,,
P5/ P6)~

* Two points, P and P,, are density connected when there is a third point P, such that
P and P, are density reachable from P,.

* Two density connected points are not necessarily density reachable from one another.

* A maximal set of density connected points define a cluster. It does not matter which
core point is the starting core point.

» All points in a cluster are density reachable from all core points.

1-302

clusterDBSCAN

O Core point
@ Border point
@ Noise point

1-303

1 Alphabetical List

1-304

Estimate Epsilon

DBSCAN clustering requires a value for the neighborhood size parameter €. The
clusterDBSCAN object and the clusterDBSCAN.estimateEpsilon function use a k-
nearest-neighbor search to estimate a scalar epsilon. Let D be the distance of any point P
to its k' nearest neighbor. Define a D,(P)-neighborhood as a neighborhood surrounding P
that contains its k-nearest neighbors. There are k + 1 points in the D, (P)-neighborhood
including the point P itself. An outline of the estimation algorithm is:

For each point, find all the points in its D,(P)-neighborhood

Accumulate the distances in all D, (P)-neighborhoods for all points into a single vector.
Sort the vector by increasing distance.

Plot the sorted k-dist graph, which is the sorted distance against point number.

Find the knee of the curve. The value of the distance at that point is an estimate of
epsilon.

The figure here shows distance plotted against point index for k = 20. The knee occurs at
approximately 1.5. Any points below this threshold belong to a cluster. Any points above
this value are noise.

clusterDBSCAN

12

10

k-NN Distance Plot

ZO-V

Noize Region
_—J
200 400 600 800 1000 1200
Index

There are several methods to find the knee of the curve. clusterDBSCAN and
clusterDBSCAN.estimateEpsilon first define the line connecting the first and last
points of the curve. The ordinate of the point on the sorted k-dist graph furthest from the
line and perpendicular to the line defines epsilon.

1-305

1 Alphabetical List

k-NN Distance Plot

20-?
-
’
I
12 i ,’
-
\ -
&v
10 e
K&?f
o
5

’ o2

w \QQ L
L7
6 ¥
e,
\}'@ ’ .
T Furifvesdt Poini
4 ,,’ Tirom Dasived Line
s
P
rs
2t P
-
P e
s
J__-_ 1 'l 'S 1 1
200 400 600 800 1000 1200
Index

When you specify a range of k values, the algorithm averages the estimate epsilon values

for all curves. This figure shows that epsilon is fairly insensitive to k for k ranging from 14
through 19.

1-306

clusterDBSCAN

£

2%]
— R

Estimated Epsilon

|]1;415{ 15.4 1?{15-& |9-NN|
I &— Estimated Epsilon
T:m&Averaged. Epsﬂur]

B

[IEEREN,
| LiAL AR

¢ =1.084 S S S W
200 400 600 800 1000 1200
Index

To create a single k-NN distance graph, set the MinNumPoints property equal to the
MaxNumPoints property.

Choosing the Minimum Number of Points

The purpose of MinNumPoints is to smooth the density estimates. Because a cluster is a
maximal set of density-connected points, choose smaller values when the expected
number of detections in a cluster is unknown. However, smaller values make the DBSCAN
algorithm more susceptible to noise. A general guideline for choosing MinNumPoints is:
* Generally, set MinNumPoints = 2P where P is the number of feature dimensions in X.

* For data sets that have one or more of the following properties:

* many noise points

* large number of points, N

1-307

1 Alphabetical List

1-308

* large dimensionality, P
* many duplicates

increasing MinNumPoints can often improve clustering results.

Ambiguous Data

The clustering algorithm is general enough to process ambiguities in any feature, but
applying clustering to range and Doppler ambiguities in radar are important applications.

Range Ambiguity

The time delay between pulse transmission and reception determines the range, R, of a
target. R is proportional to time delay, t, by

_ct
R=75

where c is the speed of light. Time is measured from the transmission time of the pulse. If
only one pulse is transmitted, the equation accurately determines the range.

Often, the radar transmits multiple pulses spaced at intervals T, the pulse repetition
interval (PRI). Range ambiguities occur when the echoes from one pulse are not received
before the next pulse is transmitted. Range is computed from the time difference of the
arrival of the received pulse from the transmission time of the most recent transmitted
pulse. Therefore the range can be incorrect by some integer multiple of the unambiguous
range. The unambiguous range of a radar system is the maximum range at which a target
can be located to guarantee that the reflected pulse from that target corresponds to the
most recent transmitted pulse. The PRI determines the unambiguous range.

cT
Rpax = 5

The range of a detection less than R,,,, is an unambiguous range. Range disambiguation
clusters detections that cross ambiguous range boundaries.

Turn on disambiguation by setting the EnableDisambiguation to true. Then, use the
AmbiguousDimension property to select the column in the input data corresponding to
range. Set the actual ambiguity limits for range using the amblims argument at
execution time.

clusterDBSCAN

Doppler Ambiguity

Doppler aliasing occurs when echoes arrive from targets that move fast enough for the
Doppler frequency to exceed the pulse repetition frequency (PRF). If the Doppler shift is
greater than “2 PRF or less than -¥2 PRE the Doppler shift is aliased into the range (-Y2
PRF, ¥2 PRF). This range is called the unambiguous Doppler. Turn on disambiguation by
setting the EnableDisambiguation to true. Then, use the AmbiguousDimension
property to select the column in the input data corresponding to Doppler. Set the actual
ambiguity limits for Doppler using the amblims argument at execution time. Doppler
ambiguity implies radial speed ambiguity as well. Make sure that amblims matches the
interpretation of the feature.

References

[1] Ester M., Kriegel H.-P.,, Sander J., and Xu X. "A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise". Proc. 2nd Int. Conf.
on Knowledge Discovery and Data Mining, Portland, OR, AAAI Press, 1996, pp.
226-231.

[2] Erich Schubert, Jorg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. 2017.
"DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN".
ACM Trans. Database Syst. 42, 3, Article 19 (July 2017), 21 pages.

[3] Dominik Kellner, Jens Klappstein and Klaus Dietmayer, "Grid-Based DBSCAN for
Clustering Extended Objects in Radar Data", 2012 IEEE Intelligent Vehicles
Symposium.

[4] Thomas Wagner, Reinhard Feger, and Andreas Stelzer, "A Fast Grid-Based Clustering
Algorithm for Range/Doppler/DoA Measurements", Proceedings of the 13th
European Radar Conference.

[5] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jorg Sander, "OPTICS:
Ordering Points To Identify the Clustering Structure", Proc. ACM SIGMOD’99 Int.
Conf. on Management of Data, Philadelphia PA, 1999.

1-309

1 Alphabetical List

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clusterDBSCAN.discoverClusters | clusterDBSCAN.estimateEpsilon | plot

Introduced in R2019b

1-310

clusterDBSCAN.discoverClusters

clusterDBSCAN.discoverClusters

Find cluster hierarchy in data

Syntax

[order,reachdist] = clusterDBSCAN.discoverClusters(X,maxepsilon,
minnumpoints)
clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints)

Description

[order,reachdist] = clusterDBSCAN.discoverClusters(X,maxepsilon,
minnumpoints) returns a cluster-ordered list of points, order, and the reachability
distances, reachdist, for each point in the data X. Specify the maximum epsilon,
maxepsilon, and the minimum number of points, minnumpoints. The method
implements the Ordering Points To Identify the Clustering Structure (OPTICS) algorithm.
The OPTICS algorithm is useful when clusters have varying densities.

clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints) displays a bar
graph representing the cluster hierarchy.

Examples

Display Cluster Hierarchy

Create target data with random detections in xy Cartesian coordinates. Use the
clusterDBSCAN.discoverClusters object function to reveal the underlying cluster
hierarchy.

First, set the clusterDBSCAN.discoverClusters parameters.

maxEpsilon = 10;
minNumPoints = 6;

1-311

1 Alphabetical List

Create random target data.

X = [randn(20,2) + [11.5,11.5]; randn(20,2) + [25,15]; randn(20,2) + [8,20]; 10*rand(1f
plot(X(:,1),X(:,2),"'.")

axis equal

grid

28 | : .

26

24

22

20

18

16

12

T
= #
i

10 1 —— -

Plot the cluster hierarchy.

clusterDBSCAN.discoverClusters(X,maxEpsilon,minNumPoints)

1-312

clusterDBSCAN.discoverClusters

Reachability Distances

10 T .

0 10 20 30 40 50 60 70
Order Index

From a visual inspection of the plot, choose Epsilon as 1.5 and then perform the
clustering using clusterDBSCAN and plot the resultant clusters.

clusterer = clusterDBSCAN('MinNumPoints',6, 'Epsilon',1.5, 'EnableDisambiguation’', false)

[idx,cidx] = clusterer(X);
plot(clusterer, X, idx)

1-313

1 Alphabetical List

Clusters
30
25
o e . El
-
S20F o%e’
0 n® ®
c L]
Z 2]
E .
(] : <
15 . F .
o
o 00
. o
10 Sege
5 10 15 20 25 30
Dimension 1

Input Arguments

X — Input feature data
real-valued N-by-P matrix

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to
feature points in a P-dimensional feature space. The P columns contain the values of the
features over which clustering takes place. The DBSCAN algorithm can cluster any type

1-314

clusterDBSCAN.discoverClusters

of data with appropriate MinNumPoints and Epsilon settings. For example, a two-
column input can contain the xy Cartesian coordinates, or range and Doppler.

Data Types: double

maxepsilon — Maximum epsilon size
positive scalar

Maximum epsilon size to use in the cluster hierarchy search, specified as a positive scalar.
The epsilon parameter defines the clustering neighborhood around a point. Reducing
maxepsilon results in shorter run times. Setting maxepsilon to inf identifies all
possible clusters.

The OPTICS algorithm is relatively insensitive to parameter settings, but choosing larger
parameters can improve results.

Example: 5.0
Data Types: double

minnumpoints — Minimum number of points
positive integer

Minimum number of points used as a threshold, specified as a positive integer. The
threshold sets the minimum number of points for a cluster.

The OPTICS algorithm is relatively insensitive to parameter settings, but choosing larger
parameters can improve results.

Example: 10
Data Types: double

Output Arguments

order — Cluster hierarchy
integer-valued 1-by-N row vector

Cluster ordered list of sample indices, returned as an integer-valued 1-by-N row vector.N
is the number of rows in the input data matrix X.

reachdist — Reachability distance
positive, real-valued 1-by-N row vector

1-315

1 Alphabetical List

1-316

Reachability distance, returned as a positive, real-valued 1-by-N row vector. N is the
number of rows in the input data matrix X.

Data Types: double

Algorithms

The outputs of clusterDBSCAN.discoverClusters let you create a reachability-plot
from which the hierarchical structure of the clusters can be visualized. A reachability-plot
contains ordered points on the x-axis and the reachability distances on the y-axis. Use the
outputs to examine the cluster structure over a broad range of parameter settings. You
can use the output to help estimate appropriate epsilon clustering thresholds for the
DBSCAN algorithm. Points belonging to a cluster have small reachability distances to
their nearest neighbor, and clusters appear as valleys in the reachability plot. Deeper
valleys correspond to denser clusters. Determine epsilon from the ordinate of the bottom
of the valleys.

OPTICS assumes that dense clusters are entirely contained by less dense clusters.
OPTICS processes data in the correct order by tracking the point density neighborhoods.

This process is performed by ordering data points by the shortest reachability distances,
guaranteeing that clusters with higher density are identified first.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is not supported for graphics output.

See Also
clusterDBSCAN | clusterDBSCAN.estimateEpsilon | plot

Introduced in R2019b

clusterDBSCAN.estimateEpsilon

clusterDBSCAN.estimateEpsilon

Estimate neighborhood clustering threshold

Syntax

epsilon = clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints)
clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints)

Description

epsilon = clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints)
returns an estimate of the neighborhood clustering threshold, epsilon, used in the
density-based spatial clustering of applications with noise (DBSCAN)algorithm. epsilon
is computed from input data X using a k-nearest neighbor (k-NN) search. MinNumPoints
and MaxNumPoints set a range of k-values for which epsilon is calculated. The range
extends from MinNumPoints - 1 through MaxNumPoints - 1. k is the number of
neighbors of a point, which is one less than the number of points in a neighborhood.

clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints) displays a
figure showing the k-NN search curves and the estimated epsilon.

Examples

Estimate Epsilon from Data

Create target data and use the estimateEpsilon object function to calculate an
appropriate epsilon threshold.

Create the target data as xy Cartesian coordinates.

X = [randn(20,2) + [11.5,11.5]; randn(20,2) + [25,15]; randn(20,2)
+ [8,20]; 10*rand(10,2) + [20,20]];

Set the range of values for the k-NN search.

1-317

1 Alphabetical List

1-318

minNumPoints
maxNumPoints

15;
20;

Estimate clustering threshold and display the value on the plot.

clusterDBSCAN.estimateEpsilon (X, minNumPoints,maxNumPoints)

Estimated Epsilon

17-f 18-§ 19-NN

14 | |—®— Estimated Epsilon 14.4 154 16-% J '
— — — -Time-Averaged Epsilon P 1 ;
By |
12t [¢
I
10 [1]
: {
8 -
6 -
f
e =3.620
2 -
200 400 600 800 1000 1200

Index

Use the estimated Epsilon value, 3.62, in the clusterer. Then plot the clusters.

clusterer = clusterDBSCAN('MinNumPoints',6, 'Epsilon',3.62, 'EnableDisambiguation', false
[idx,cidx] = clusterer(X);
plot(clusterer, X, idx)

clusterDBSCAN.estimateEpsilon

30

25

Dimension 2
[
=

—%
|4

10

Input Arguments

X — Input feature data
real-valued N-by-P matrix

Clusters
i:.:.
L LY
L N]
.i [] .
. L
L
© 3
u . r .l
1] o
s %y
L] . ..' e
[] . l'- ..
B []
[]
5 10 15 20 25 30
Dimension 1

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to
feature points in a P-dimensional feature space. The P columns contain the values of the
features over which clustering takes place. The DBSCAN algorithm can cluster any type

1-319

1 Alphabetical List

of data with appropriate MinNumPoints and Epsilon settings. For example, a two-
column input can contain the xy Cartesian coordinates, or range and Doppler.

Data Types: double

MinNumPoints — Starting value of k-NN search range
positive integer

The starting value of the k-NN search range, specified as a positive integer.
MinNumPoints is used to specify the starting value of k in the k-NN search range. The
starting value of k is one less than MinNumPoints.

Example: 10
Data Types: double

MaxNumPoints — Set end value of k-NN search range
positive integer

The end value of k-NN search range, specified as a positive integer. MaxNumPoints is
used to specify the ending value of k in the k-NN search range. The ending value of k is
one less than MaxNumPoints.

Output Arguments

epsilon — Estimated epsilon
positive scalar

Estimated epsilon, returned as a positive scalar.

Algorithms

Estimate Epsilon

DBSCAN clustering requires a value for the neighborhood size parameter €. The
clusterDBSCAN object and the clusterDBSCAN.estimateEpsilon function use a k-
nearest-neighbor search to estimate a scalar epsilon. Let D be the distance of any point P
to its k™ nearest neighbor. Define a D,(P)-neighborhood as a neighborhood surrounding P
that contains its k-nearest neighbors. There are k + 1 points in the D,(P)-neighborhood
including the point P itself. An outline of the estimation algorithm is:

1-320

clusterDBSCAN.estimateEpsilon

12

10

» For each point, find all the points in its D;(P)-neighborhood

* Accumulate the distances in all D,(P)-neighborhoods for all points into a single vector.

» Sort the vector by increasing distance.

» Plot the sorted k-dist graph, which is the sorted distance against point number.

* Find the knee of the curve. The value of the distance at that point is an estimate of
epsilon.

The figure here shows distance plotted against point index for k = 20. The knee occurs at
approximately 1.5. Any points below this threshold belong to a cluster. Any points above
this value are noise.

k-NN Distance Plot

20-y

Noise Region
_-J
200 400 600 800 1000 1200
Index

There are several methods to find the knee of the curve. clusterDBSCAN and
clusterDBSCAN.estimateEpsilon first define the line connecting the first and last
points of the curve. The ordinate of the point on the sorted k-dist graph furthest from the
line and perpendicular to the line defines epsilon.

1-321

1 Alphabetical List

k-NN Distance Plot

20-?
-
’
I
12 i ,’
-
\ -
&v
10 e
K&?f
o
5

’ o2

w \QQ L
L7
6 ¥
e,
\}'@ ’ .
T Furifvesdt Poini
4 ,,’ Tirom Dasived Line
s
P
rs
2t P
-
P e
s
J__-_ 1 'l 'S 1 1
200 400 600 800 1000 1200
Index

When you specify a range of k values, the algorithm averages the estimate epsilon values

for all curves. This figure shows that epsilon is fairly insensitive to k for k ranging from 14
through 19.

1-322

clusterDBSCAN.estimateEpsilon

£

2%]
— R

Estimated Epsilon
| j1a41541ai1r{1541;ﬂu|
I &— Estimated Epsilon

Time-Averaged Epmlur]

B

[IEEREN,
| LiAL AR

¢ =1.084 S S S W
200 400 600 800 1000 1200
Index

To create a single k-NN distance graph, set the MinNumPoints property equal to the
MaxNumPoints property.

Choosing the Minimum and Maximum Number of Points

The purpose of MinNumPoints is to smooth the density estimates. Because a cluster is a
maximal set of density-connected points, choose smaller values when the expected
number of detections in a cluster is unknown. However, smaller values make the DBSCAN
algorithm more susceptible to noise. A general guideline for choosing MinNumPoints is:
* Generally, set MinNumPoints = 2P where P is the number of feature dimensions in X.

* For data sets that have one or more of the following properties:

* many noise points

* large number of points, N

1-323

1 Alphabetical List

* large dimensionality, P
* many duplicates

increasing MinNumPoints can often improve clustering results.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is not supported for graphics output.

See Also
clusterDBSCAN | clusterDBSCAN.discoverClusters | plot

Introduced in R2019b

1-324

plot

plot

Plot clusters

Syntax

fh
fh
fh

plot(clusterer,X,idx)
plot(,'Parent', ax)
plot(,'Title',titlestr)

Description

fh = plot(clusterer, X, idx) displays a plot of DBSCAN clustering results and
returns a figure handle, fh. Inputs are the cluster object, clusterer, the input data
matrix, X, and cluster indices, idx.

fh = plot(__ ,'Parent',ax) also specifies the axes, ax, of the cluster results plot.

fh = plot(___ ,'Title',titlestr) also specifies the title, titlestr, of the cluster
results plot.

Examples

Cluster Detections in Range and Doppler

Create detections of extended objects with measurements in range and Doppler. Assume
the maximum unambiguous range is 20 m and the unambiguous Doppler span extends
from —30 Hz to 30 Hz. The data matrix is contained in the dataClusterDBSCAN.mat
file. The first column represents range, and the second column represents Doppler.

The input data contains the following extended targets and false alarms specified:

* an unambiguous target located at (10, 15)
* an ambiguous target in Doppler located at (10, — 30)

1-325

1 Alphabetical List

1-326

* an ambiguous target in range located at (20, 15)
* an ambiguous target in range and Doppler located at (20, 30)
* 5 false alarms

Create a clusterDBSCAN object and specify that disambiguation is not performed by
setting EnableDisambiguation to false. Solve for the cluster indices.

load('dataClusterDBSCAN.mat"');
clusterl = clusterDBSCAN('MinNumPoints"',3, 'Epsilon',2,

'EnableDisambiguation', false);
idx = clusterl(x);

Use the clusterDBSCAN plot object function to display the clusters.

plot(clusterl,x,idx)

plot

Dimension 2

30

20

10

-10

-30

The plot indicates that there are eight apparent clusters and six noise points. The

Clusters

v (1]

xrin]

Lemel] el

B M0 12 14 16 18 20
Dimension 1

'‘Dimension 1' label corresponds to range and the 'Dimension 2' label corresponds to
Doppler.

Next, create another clusterDBSCAN object and set EnableDisambiguation to true

to specify that clustering is performed across the range and Doppler ambiguity

boundaries.

cluster2 = clusterDBSCAN('MinNumPoints',3, 'Epsilon',?2,

Perform the clustering using ambiguity limits and then plot the clustering results. The
DBSCAN clustering results correctly show four clusters and five noise points. For

'"EnableDisambiguation’', true, 'AmbiguousDimension',[1 2]);

1-327

1 Alphabetical List

example, the points at ranges close to zero are clustered with points near 20 m because
the maximum unambiguous range is 20 m.

amblims

[0 maxRange; minDoppler maxDoppler];

idx = cluster2(x,amblims);

plot(cluster2,x,idx)

or =

Dimension 2
e
[[
T T

L
=
T

Clusters

vep]

w [

’r

Input Arguments

8 10 12 14 16
Dimension 1

clusterer — Clusterer object

clusterDBSCAN object

1-328

18 20

plot

Clusterer object, specified as a clusterDBSCAN object.

X — Input data to cluster
real-valued N-by-P matrix

Input data, specified as a real-valued N-by-P matrix. The N rows correspond to points in a
P-dimensional feature space. The P columns contain the values of the features over which
clustering takes place. For example, a two-column input can contain Cartesian
coordinates x and y, or range and Doppler.

Data Types: double

idx — Cluster indices
N-by-1 integer-valued column vector

Cluster indices, specified as an N-by-1 integer-valued column vector. Cluster indices
represent the clustering results of the DBSCAN algorithm contained in the first output
argument of clusterDBSCAN. idx values start at one and are consecutively numbered.
The plot object function labels each cluster with the cluster index. A value of -1 in idx
indicates a DBSCAN noise point. Noise points are not labeled.

Data Types: double

ax — Axes of plot
Axes handle

Axes of plot, specified as an Axes object handle.
Data Types: double

titlestr — Plot title
character vector | string

Plot title, specified as a character vector or string.
Example: 'Range-Doppler Clusters'
Data Types: char | string

Output Arguments

fh — Figure handle of plot
positive scalar

1-329

1 Alphabetical List

Figure handle of plot, returned as a positive scalar.

See Also
clusterDBSCAN | clusterDBSCAN.discoverClusters |
clusterDBSCAN.estimateEpsilon

Introduced in R2019b

1-330

phased.ConformalArray

phased.ConformalArray

Package: phased

Conformal array

Description

The ConformalArray object constructs a conformal array. A conformal array can have
elements in any position pointing in any direction.

To compute the response for each element in the array for specified directions:

Define and set up your conformal array. See “Construction” on page 1-331.

2 Call step to compute the response according to the properties of
phased.ConformalArray. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Construction

H = phased.ConformalArray creates a conformal array System object, H. The object
models a conformal array formed with identical sensor elements.

H = phased.ConformalArray(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Namel,Valuel,...,NameN,ValueN).

H = phased.ConformalArray(P0S,NV,Name,Value) creates a conformal array

object, H, with the ElementPosition property set to POS, the ElementNormal property
set to NV, and other specified property Names set to the specified Values. POS and NV are

1-331

1 Alphabetical List

1-332

value-only arguments. When specifying a value-only argument, specify all preceding
value-only arguments. You can specify name-value arguments in any order.

Properties

Element
Element of array

Specify the element of the sensor array as a handle. The element must be an element
object in the phased package.

Default: Isotropic antenna element with default properties
ElementPosition
Element positions

ElementPosition specifies the positions of the elements in the conformal array.
ElementPosition must be a 3-by-N matrix, where N indicates the number of elements
in the conformal array. Each column of ElementPosition represents the position, in the
form [x; y; z] (in meters), of a single element in the local coordinate system of the
array. The local coordinate system has its origin at an arbitrary point. The default value of
this property represents a single element at the origin of the local coordinate system.

Default: [0; 0; 0]
ElementNormal
Element normal directions

ElementNormal specifies the normal directions of the elements in the conformal array.
Angle units are degrees. The value assigned to ELementNormal must be either a 2-by-N
matrix or a 2-by-1 column vector. The variable N indicates the number of elements in the
array. If the value of ELlementNormal is a matrix, each column specifies the normal
direction of the corresponding element in the form [azimuth;elevation] with respect
to the local coordinate system. The local coordinate system aligns the positive x-axis with
the direction normal to the conformal array. If the value of ELementNormal is a 2-by-1
column vector, it specifies the same pointing direction for all elements in the array.

You can use the ElementPosition and ElementNormal properties to represent any
arrangement in which pairs of elements differ by certain transformations. The

phased.ConformalArray

transformations can combine translation, azimuth rotation, and elevation rotation.
However, you cannot use transformations that require rotation about the normal.

Default: [0; 0]
Taper
Element taper or weighting

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector, or
N-by-1 column vector. Weights are applied to each element in the sensor array. N is the
number of elements along in the array as determined by the size of the
ElementPosition property. If the Taper parameter is a scalar, the same taper value is
applied to all elements. If the value of Taper is a vector, each taper values is applied to
the corresponding element.

Default: 1

Methods

directivity Directivity of conformal array
collectPlaneWave Simulate received plane waves

getElementNormal = Normal vector to array elements
getElementPosition Positions of array elements

getNumElements Number of elements in array

getTaper Array element tapers

isPolarizationCapable Polarization capability

pattern Plot conformal array pattern

patternAzimuth Plot conformal array directivity or pattern versus azimuth
patternElevation Plot conformal array array directivity or pattern versus elevation
plotResponse Plot response pattern of array

step Output responses of array elements

viewArray View array geometry

1-333

1 Alphabetical List

1-334

Common to All System Objects

release |Allow System object property value changes

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0
degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(...
'"ElementPosition', [cosd(azang);sind(azang);zeros(1,N)],...
"ElementNormal', [azang;zeros(1,N)]1);

fc = 1le9;

¢ = physconst('LightSpeed"');

pattern(sCA,fc,[-180:180],0, ...
'"PropagationSpeed’,c, 'Type', 'powerdb’, ...
'CoordinateSystem', 'polar')

phased.ConformalArray

Azimuth Cut (elevation angle = 0.0°)
90

Mormalized Power (dB), Broadside at 0.00 °

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using the
ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

1-335

1 Alphabetical List

Construct the array

N = 31;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(. ..
'FrequencyRange', [0,10000], '‘BackBaffled', true);

sArray = phased.ConformalArray('Element',sMic,...
'"ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)l, ...
'"ElementNormal', [ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:40], ...
'PropagationSpeed’,c, ...
'CoordinateSystem', 'polar',...
'Type', 'efield"')

1-336

phased.ConformalArray

Elevation Cut (azimuth angle = 0.0°)
90

120] 50
Og
150 Cg 30
Og
a >
A
e '\
180 — o 0
H""‘--.__:\:‘
-150 -30
-120 -60
-90

Mormalized Magnitude, Broadside at 0.00 °

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40], ...
'PropagationSpeed’,c, ...
'CoordinateSystem', 'polar', ...
'Type', 'directivity')

1-337

1 Alphabetical List

Elevation Cut (azimuth angle = 0.0°)
80

60
1a
a
30
=19 -
AT
/" i
y e
-3 _,--""'H".ﬁ H\“'.
L -) 1]
H"“-.—_._. N -../
"x-.‘_h \\\ll
-30
60
=90

Directivity (dBi), Broadside at0.00 ®

120
150
180
-150
=120
References

[1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and Design. Piscataway,

NJ: IEEE Press, 2006.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

1-338

phased.ConformalArray

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* pattern, patternAzimuth, patternElevation, plotResponse, and viewArray
methods are not supported.

* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

phased.CosineAntennaElement | phased.CustomAntennaElement |
phased.IsotropicAntennaElement | phased.PartitionedArray |
phased.ReplicatedSubarray | phased.UCA | phased.ULA | phased.URA |
phitheta2azel | uv2azel

Topics
Phased Array Gallery

Introduced in R2012a

1-339

1 Alphabetical List

directivity

System object: phased.ConformalArray
Package: phased

Directivity of conformal array

Syntax
D = directivity(H, FREQ,ANGLE)
D = directivity(H, FREQ,ANGLE,Name,Value)

Description

D = directivity(H, FREQ,ANGLE) computes the “Directivity” on page 1-344 of a
conformal array of antenna or microphone elements, H, at frequencies specified by the
FREQ and in angles of direction specified by the ANGLE.

D = directivity(H, FREQ,ANGLE,Name,Value) computes the directivity with
additional options specified by one or more Name, Value pair arguments.

Input Arguments

H — Conformal array
System object

Conformal array specified as a phased.ConformalArray System object.

Example: H = phased.ConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-
L real-valued row vector. Frequency units are in hertz.

1-340

directivity

» For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie
within the range of values specified by the FrequencyRange or FrequencyVector
property of the element. Otherwise, the element produces no response and the
directivity is returned as —Inf. Most elements use the FrequencyRange property
except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the directivity
is returned as —Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M
real-valued matrix, where M is the number of angular directions. Angle units are in
degrees. If ANGLE is a 2-by-M matrix, then each column specifies a direction in azimuth
and elevation, [az;el]. The azimuth angle must lie between -180° and 180°. The
elevation angle must lie between -90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the
elevation angle assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis. See “Azimuth and Elevation Angles”.

Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

1-341

1 Alphabetical List

1-342

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'"PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed’',physconst('LightSpeed")
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-
by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights are
applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued Scalar or 1-by-L row vector |Applies a set of weights for

column vector the single frequency or for
all L frequencies.

N-by-L complex-valued 1-by-L row vector Applies each of the L

matrix columns of 'Weights' for

the corresponding

frequency in FREQ.

Note Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can
compute your own weights. In general, you apply Hermitian conjugation before using
weights in any Phased Array System Toolbox function or System object such as
phased.Radiator or phased.Collector. However, for the directivity, pattern,
patternAzimuth, and patternElevation methods of any array System object use the
steering vector without conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

directivity

Output Arguments

D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles
specified by ANGLE. Each column corresponds to one of the L frequency values specified
in FREQ. Directivity units are in dBi where dBi is defined as the gain of an element
relative to an isotropic radiator.

Examples

Directivity of Conformal Array

Compute the directivity of a circular array constructed using a conformal array System
object™.

Construct a 21-element uniform circular sonar array (UCA) of backbaffled omnidirectional
microphones. The array is one meter in diameter. Set the operating frequency to 4 kHz. A
typical value for the speed of sound in seawater is 1500.0 m/s.

N = 21;
theta = (0:N-1)*360/N-180;
Radius = 0.5;

myMic = phased.OmnidirectionalMicrophoneElement;

myMicFrequencyRange = [0,5000];

myMic.BackBaffled = true;

myArray = phased.ConformalArray;

myArray.Element = myMic;

myArray.ElementPosition = Radius*[zeros(1,N);cosd(theta);sind(theta)l];
myArray.ElementNormal = [ones(1,N);zeros(1,N)];

c = 1500.0;

fc = 4000;

Steer the array to 30 degrees in azimuth and compute the directivity in the steering
direction.

lambda = c/fc;

ang = [30;0];
w = steervec(getElementPosition(myArray)/lambda,ang);

1-343

1 Alphabetical List

1-344

d = directivity(myArray,fc,ang, ...
'PropagationSpeed’,c,...
'Weights',w)

d = 15.1633

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or
array of sensor elements.

Higher directivity is desired when you want to transmit more radiation in a specific
direction. Directivity is the ratio of the transmitted radiant intensity in a specified
direction to the radiant intensity transmitted by an isotropic radiator with the same total
transmitted power

D= 4g Urad(0, 9)

Protal
where U,4(0,9) is the radiant intensity of a transmitter in the direction (6,¢) and P, is
the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission. When
converted to decibels, the directivity is denoted as dBi. For information on directivity,
read the notes on “Element Directivity” and “Array Directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity over
all directions in space to obtain the total transmitted power. There is a difference between
how that integration is performed when Antenna Toolbox™ antennas are used in a phased
array and when Phased Array System Toolbox antennas are used. When an array contains
Antenna Toolbox antennas, the directivity computation is performed using a triangular
mesh created from 500 regularly spaced points over a sphere. For Phased Array System
Toolbox antennas, the integration uses a uniform rectangular mesh of points spaced 1°
apart in azimuth and elevation over a sphere. There may be significant differences in
computed directivity, especially for large arrays.

directivity

See Also

pattern | patternAzimuth | patternElevation

1-345

1 Alphabetical List

1-346

collectPlaneWave

System object: phased.ConformalArray
Package: phased

Simulate received plane waves

Syntax

Y = collectPlaneWave(H, X, ANG)

Y = collectPlaneWave(H, X, ANG, FREQ)

Y = collectPlaneWave(H, X, ANG, FREQ, C)
Description

Y = collectPlaneWave(H, X, ANG) returns the received signals at the sensor array, H,
when the input signals indicated by X arrive at the array from the directions specified in
ANG.

Y = collectPlaneWave(H, X, ANG, FREQ), in addition, specifies the incoming signal
carrier frequency in FREQ.

Y = collectPlaneWave(H, X, ANG, FREQ, C), in addition, specifies the signal
propagation speed in C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an
individual incoming signal.

collectPlaneWave

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M
matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the
corresponding signal in X. Each column of ANG is in the form [azimuth; elevation].
The azimuth angle must be between -180° and 180°, inclusive. The elevation angle must
be between -90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this
case, the corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.
Default: 3e8

C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments

Y

Received signals. Y is an N-column matrix, where N is the number of elements in the
array H. Each column of Y is the received signal at the corresponding array element, with
all incoming signals combined.

Examples

Simulate Received Signals at Conformal Array

Simulate two received signals at an 8-element uniform circular array. The signals arrive
from 10° and 30° azimuth, respectively. Both signals have an elevation angle of 0°.

1-347

1 Alphabetical List

1-348

Assume the propagation speed is the speed of light and the carrier frequency of the signal
is 100 MHz.

N = 8;
azang = (0:N-1)*360/N-180;
array = phased.ConformalArray('ElementPosition’,

[cosd(azang);sind(azang);zeros(1,N)], 'ElementNormal', [azang;zeros(1,N)]1);
y = collectPlaneWave(array,randn(4,2),[10 30],100e6);

Algorithms

collectPlaneWave modulates the input signal with a phase corresponding to the delay
caused by the direction of arrival. The method does not account for the response of
individual elements in the array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

getElementNormal

getElementNormal

System object: phased.ConformalArray
Package: phased

Normal vector to array elements

Syntax

normvec
normvec

getElementNormal (sConfArray)
getElementNormal (sConfArray,elemidx)

Description

normvec = getElementNormal(sConfArray) returns the normal vectors of the array
elements of the phased.sConfArray System object, sConfArray. The output argument
normvec is a 2-by-N matrix, where N is the number of elements in array, sConfArray.
Each column of normvec defines the normal direction of an element in the local
coordinate system in the form[az;el]. Units are degrees. The origin of the local
coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sConfArray,elemidx) returns only the normal

vectors of the elements specified in the element index vector, elemidx. This syntax can
use any of the input arguments in the previous syntax.

Input Arguments

sConfArray — Conformal array
phased.ConformalArray System object

Conformal array, specified as a phased.ConformalArray System object.

Example: phased.ConformalArray

1-349

1 Alphabetical List

1-350

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1
column vector

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range 1 to
N where N is the number of elements of the array. When elemidx is specified,
getElementNormal returns the normal vectors of the elements contained in elemidx.

Example: [1,5,4]

Output Arguments

normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of
normvec takes the form [az,el]. When elemidx is not specified, P equals the array
dimension. When elemidx is specified, P equals the length of elemidx, M.

Examples

Conformal Array Element Normals

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System
object. Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Display the array normal vectors.

N=25;

fc = 4000;

c = 1500.0;

lam = c/fc;

X = zeros(1,N);

y =1[-1,0,1,0,0]*lam/2;

z [0,0,0,-1,1]*1lam/2;

sMic = phased.OmnidirectionalMicrophoneElement(. ..
'FrequencyRange', [0,10000], 'BackBaffled', true);

sConformArray = phased.ConformalArray('Element',sMic,...
'"ElementPosition', [x;y;z], ...
"ElementNormal', [45*ones(1,N);zeros(1,N)]1);

pos = getElementPosition(sConformArray)

getElementNormal

pos = 3x5
0 0 0 0
-0.1875 0 0.1875 0
0 0 0 -0.1875

normvec = getElementNormal(sConformArray)

normvec 2x5

Introduced in R2016a

0
0
0.1875

1-351

1 Alphabetical List

1-352

getElementPosition

System object: phased.ConformalArray
Package: phased

Positions of array elements

Syntax

POS
POS

getElementPosition(H)
getElementPosition(H,ELEIDX)

Description

POS = getElementPosition(H) returns the element positions of the conformal array
H. POS is an 3xN matrix where N is the number of elements in H. Each column of POS
defines the position of an element in the local coordinate system, in meters, using the
form [x; y; z].

For details regarding the local coordinate system of the conformal array, enter
phased.ConformalArray.coordinateSystemInfo.

POS = getElementPosition(H, ELEIDX) returns the positions of the elements that
are specified in the element index vector ELEIDX.

Examples

Element Positions of Conformal Array

Construct a three-element conformal array and obtain the element positions.

array = phased.ConformalArray('ElementPosition',[-1,0,1;0,0,0;0,0,0]);
pos = getElementPosition(array)

pos = 3x3

getElementPosition

[oNo]

[oNoNO]

[oNoR

1-353

1 Alphabetical List

getNumElements

System object: phased.ConformalArray
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the conformal array
object H.

Examples

Number of Elements of Conformal Array

Construct a three-element conformal array and obtain the number of elements.

array = phased.ConformalArray('ElementPosition',[-1,0,1;0,0,0;0,0,0]);
N = getNumElements(array)

N =3

1-354

getTaper

getTaper

System object: phased.ConformalArray
Package: phased

Array element tapers

Syntax

wts = getTaper(h)

Description

wts = getTaper(h) returns the tapers applied to each element of a conformal array, h.
Tapers are often referred to as weights.

Input Arguments

h — Conformal array
phased.ConformalArray System object

Conformal array specified as a phased.ConformalArray System object.

Output Arguments

wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector, where N is the
number of elements in the array.

Examples

1-355

1 Alphabetical List

Create and View a Tapered Array
Create a two-ring tapered disk array

Create a two-ring disk array and set the taper values on the outer ring to be smaller than
those on the inner ring.

elemAngles = ([0:5]*360/6);

elemPosInner = 0.5*[zeros(size(elemAngles));...
cosd(elemAngles);...
sind(elemAngles)];

elemPosOuter = [zeros(size(elemAngles));...
cosd(elemAngles);...
sind(elemAngles)];

elemNorms = repmat([0;0],1,12);

taper = [ones(size(elemAngles)),0.3*ones(size(elemAngles))];

ha = phased.ConformalArray(...
[elemPosInner,elemPosOuter],elemNorms, 'Taper', taper);

Display the taper values
w = getTaper(ha)
w = 12x1

.0000
.0000
.0000
.0000
.0000
.0000
.3000
.3000
.3000
.3000

COOCORKHKFRERF K

View the array

viewArray(ha, 'ShowTaper', true, 'ShowIndex','all');

1-356

getTaper

Array Geometry

o’ @ e @

.1 1 .12

i

Aray Span:
X axis = 0,000 m

Y axis = 2000 m
Zaxis=1.732m

1-357

1 Alphabetical List

isPolarizationCapable

System object: phased.ConformalArray
Package: phased

Polarization capability

Syntax

flag = isPolarizationCapable(h)

Description

flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating
whether the array supports polarization. An array supports polarization if all of its
constituent sensor elements support polarization.

Input Arguments

h — Conformal array

Conformal array specified as a phased.ConformalArray System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the array supports polarization
or false if it does not.

Examples

1-358

isPolarizationCapable

Conformal Array of Short-Dipole Antennas Supports Polarization

Show that a circular conformal array of phased.ShortDipoleAntennaElement
antenna elements supports polarization.

N = 8;

azang = (0:N-1)*360/N-180;

antenna = phased.ShortDipoleAntennaElement;
array = phased.ConformalArray(...

'Element',antenna, 'ElementPosition', [cosd(azang);sind(azang);zeros(1,N)],...

'ElementNormal', [azang;zeros(1,N)]);
isPolarizationCapable(array)

ans = logical
1

The returned value 1 shows that this array supports polarization.

1-359

1 Alphabetical List

1-360

pattern

System object: phased.ConformalArray
Package: phased

Plot conformal array pattern

Syntax

pattern
pattern

sArray, FREQ)

sArray, FREQ,AZ)
pattern(sArray, FREQ,AZ,EL)

pattern ,Name, Value)

[PAT,AZ ANG,EL ANG] = pattern()

PSS

Description

pattern(sArray, FREQ) plots the 3-D array directivity pattern (in dBi) for the array
specified in sArray. The operating frequency is specified in FREQ.

pattern(sArray, FREQ,AZ) plots the array directivity pattern at the specified azimuth
angle.

pattern(sArray, FREQ,AZ, EL) plots the array directivity pattern at specified azimuth
and elevation angles.

pattern(_ ,Name,Value) plots the array pattern with additional options specified
by one or more Name, Value pair arguments.

[PAT,AZ ANG,EL_ANG] = pattern(__) returns the array pattern in PAT. The

AZ_ ANG output contains the coordinate values corresponding to the rows of PAT. The
EL_ANG output contains the coordinate values corresponding to the columns of PAT. If the
"CoordinateSystem' parameteris setto 'uv', then AZ ANG contains the U
coordinates of the pattern and EL ANG contains the V coordinates of the pattern.
Otherwise, they are in angular units in degrees. UV units are dimensionless.

pattern

Note This method replaces the plotResponse method. See “Convert plotResponse to
pattern” on page 1-371 for guidelines on how to use pattern in place of plotResponse.

Input Arguments

sArray — Conformal array
System object

Conformal array, specified as a phased.ConformalArray System object.

Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-
L real-valued row vector. Frequency units are in hertz.

« For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie
within the range of values specified by the FrequencyRange or FrequencyVector
property of the element. Otherwise, the element produces no response and the
directivity is returned as —Inf. Most elements use the FrequencyRange property
except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the directivity
is returned as —Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued

row vector where N is the number of azimuth angles. Angle units are in degrees. Azimuth
angles must lie between -180° and 180°.

1-361

1 Alphabetical List

1-362

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. When measured from the x-axis toward the y-axis, this angle is
positive.

Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued
row vector where M is the number of desired elevation directions. Angle units are in
degrees. The elevation angle must lie between -90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation
angle is positive when measured towards the z-axis.

Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
‘polar’ (default) | ' rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair
consisting of 'CoordinateSystem' and one of 'polar’, 'rectangular', or 'uv'.
When 'CoordinateSystem' issetto 'polar' or 'rectangular’', the AZ and EL
arguments specify the pattern azimuth and elevation, respectively. AZ values must lie
between -180° and 180°. EL values must lie between -90° and 90°. If
"CoordinateSystem' issetto 'uv', AZ and EL then specify U and V coordinates,
respectively. AZ and EL must lie between -1 and 1.

Example: 'uv

Data Types: char

pattern

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb’

Displayed pattern type, specified as the comma-separated pair consisting of ' Type' and
one of
* 'directivity' — directivity pattern measured in dBi.

+ ‘'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

* 'power' — power pattern of the sensor or array defined as the square of the field
pattern.

* 'powerdb' — power pattern converted to dB.

Example: 'powerdb’

Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of
"Normalize' and a Boolean. Set this parameter to true to display a normalized pattern.
This parameter does not apply when you set 'Type' to 'directivity'. Directivity
patterns are already normalized.

Data Types: logical

PlotStyle — Plotting style
‘overlay' (default) | 'waterfall’

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and
either 'overlay' or 'waterfall'. This parameter applies when you specify multiple
frequencies in FREQ in 2-D plots. You can draw 2-D plots by setting one of the arguments
AZ or EL to a scalar.

Data Types: char

Polarization — Polarized field component
‘combined' (default) | ‘"H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the

1-363

1 Alphabetical List

1-364

sensors are polarization-capable and when the 'Type' parameter is not set to
'directivity'. This table shows the meaning of the display options.

'Polarization’ Display
'combined'’ Combined H and V polarization components
'H' H polarization component
'v! V polarization component
Example: 'V'

Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
"PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed’',physconst('LightSpeed")
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-
by-1 complex-valued column vector or N-by-L complex-valued matrix. Array weights are
applied to the elements of the array to produce array steering, tapering, or both. The
dimension N is the number of elements in the array. The dimension L is the number of
frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose

N-by-1 complex-valued Scalar or 1-by-L row vector |Applies a set of weights for

column vector the single frequency or for
all L frequencies.

N-by-L complex-valued 1-by-L row vector Applies each of the L

matrix columns of 'Weights' for
the corresponding
frequency in FREQ.

pattern

Note Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can
compute your own weights. In general, you apply Hermitian conjugation before using
weights in any Phased Array System Toolbox function or System object such as
phased.Radiator or phased.Collector. However, for the directivity, pattern,
patternAzimuth, and patternElevation methods of any array System object use the
steering vector without conjugation.

Example: 'Weights',ones(N,M)

Data Types: double
Complex Number Support: Yes

Output Arguments

PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT
correspond to the dimensions of the output arguments AZ_ ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-
N real-valued row vector corresponding to the dimension set in AZ. The columns of PAT
correspond to the values in AZ ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M
real-valued row vector corresponding to the dimension set in EL. The rows of PAT
correspond to the values in EL_ANG. Units are in degrees.

Examples

1-365

1 Alphabetical List

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0
degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(...
'ElementPosition', [cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal', [azang;zeros(1,N)]);

fc = 1e9;

c = physconst('LightSpeed');

pattern(sCA,fc,[-180:180],0,...
'PropagationSpeed',c, 'Type', 'powerdb’, ...
'CoordinateSystem', 'polar')

1-366

pattern

Azimuth Cut (elevation angle = 0.0°)
90

Mormalized Power (dB), Broadside at 0.00 °

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using the
ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

1-367

1 Alphabetical List

Construct the array

N = 31;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(. ..
'FrequencyRange', [0,10000], '‘BackBaffled', true);

sArray = phased.ConformalArray('Element',sMic,...
'"ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)l, ...
'"ElementNormal', [ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:40], ...
'PropagationSpeed’,c, ...
'CoordinateSystem', 'polar',...
'Type', 'efield"')

1-368

pattern

Elevation Cut (azimuth angle = 0.0°)
90

120] 50
Og
150 Cg 30
Og
a >
A
e '\
180 — o 0
H""‘--.__:\:‘
-150 -30
-120 -60
-90

Mormalized Magnitude, Broadside at 0.00 °

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40], ...
'PropagationSpeed’,c, ...
'CoordinateSystem', 'polar', ...
'Type', 'directivity')

1-369

1 Alphabetical List

Elevation Cut (azimuth angle = 0.0°)
80

120 60
10
a
150 30
-1 -
P
/" i
@ L
- d--"f#‘-ﬁ{ } H\‘\.
180 <t] o
H"“-.—_._._____ -../
= —
o ™
-150 -30
=120 =60
80

Directivity (dBi), Broadside at0.00 ®

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or
array of sensor elements.

Higher directivity is desired when you want to transmit more radiation in a specific
direction. Directivity is the ratio of the transmitted radiant intensity in a specified
direction to the radiant intensity transmitted by an isotropic radiator with the same total
transmitted power

1-370

pattern

D=4 Urad(0, 9)

Protal
where U,,4(0,9) is the radiant intensity of a transmitter in the direction (6,¢) and P, is
the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission. When
converted to decibels, the directivity is denoted as dBi. For information on directivity,
read the notes on “Element Directivity” and “Array Directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity over
all directions in space to obtain the total transmitted power. There is a difference between
how that integration is performed when Antenna Toolbox antennas are used in a phased
array and when Phased Array System Toolbox antennas are used. When an array contains
Antenna Toolbox antennas, the directivity computation is performed using a triangular
mesh created from 500 regularly spaced points over a sphere. For Phased Array System
Toolbox antennas, the integration uses a uniform rectangular mesh of points spaced 1°
apart in azimuth and elevation over a sphere. There may be significant differences in
computed directivity, especially for large arrays.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D
azimuth and elevation pattern plots. These methods are azimuthPattern and
elevationPattern.

The following table is a guide for converting your code from using plotResponse to
pattern. Notice that some of the inputs have changed from input arguments to Name-
Value pairs and conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL, 'Namel', 'Valuel', ..., 'NameN', 'ValueN')

plotResponse Inputs

plotResponse Description

pattern Inputs

H argument

Antenna, microphone, or array
System object.

H argument (no change)

FREQ argument

Operating frequency.

FREQ argument (no change)

1-371

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

V argument

Propagation speed. This
argument is used only for
arrays.

'PropagationSpeed' name-
value pair. This parameter is
only used for arrays.

1-372

pattern

plotResponse Inputs

plotResponse Description

pattern Inputs

'Format' and 'RespCut'’
name-value pairs

These options work together to
let you create a plot in angle
space (line or polar style) or UV
space. They also determine
whether the plot is 2-D or 3-D.
This table shows you how to
create different types of plots
using plotResponse.

Display space

Angle space Set

(2D) 'RespCut’
to 'Az' or
"E1l"'. Set
"Format' to
'line’ or
'polar’'.

Set the display
axis using
either the
'AzimuthAng
les' or
'ElevationA
ngles' name-
value pairs.

'CoordinateSystem' name-
value pair used together with
the AZ and EL input arguments.

'CoordinateSystem' has the
same options as the
plotResponse method
'Format 'name-value pair,
except that 'line' is now
named 'rectangular'. The
table shows how to create
different types of plots using

pattern.

Display space

Angle space
(2D)

Set
'Coordinate
System' to
'rectangula
r'or
'polar'.
Specify either
AZor EL as a
scalar.

Angle space Set

(3D) 'RespCut' to
'3D"'. Set
‘Format' to
'line' or
'polar’'.

Set the display
axis using both
the
"AzimuthAng
les'

Angle space
(3D)

Set
'Coordinate
System' to
'rectangula
r'or
'polar’.
Specify both
AZ and EL as
vectors.

UV space (2D)

Set
'Coordinate
System' to
‘uv'. Use AZ

1-373

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

Display space Display space
and'Elevati to specify a U-
onAngles' space vector.
name-value Use EL to
pairs. specify a V-
UV space (2D) |Set space scalar.
'RespCut’ UV space (3D) |Set
to'U". Set ‘Coordinate
"Format’ to System' to
"UV'. Set the ‘uv'. Use AZ
display range to specify a U-
using the space vector.
'UGrid* Use EL to
name-value specify a V-
pair. space vector.
UV space (3D) $gtespCut ' If you set CoordinateSystem
to'3D'. Set to 'uv', enter the UV grid
'Format' to | /Velues using AZ and EL.
"UV'. Set the
display range
using both the
'UGrid' and
'VGrid'
name-value
pairs.

'CutAngle' name-value pair

Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' issetto 'Az' or
'"ELl', use 'CutAngle' to set
the slice across which to view
the plot.

No equivalent name-value pair.
To create a cut, specify either
AZ or EL as a scalar, not a
vector.

1-374

pattern

plotResponse Inputs

plotResponse Description

pattern Inputs

'NormalizeResponse' name-

value pair

Normalizes the plot. When
'Unit' issetto 'dbi', you
cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-
value pair. When 'Type' is set
to 'directivity' you cannot
specify 'Normalize'.

'OverlayFreq' name-value
pair

Plot multiple frequencies on the
same 2-D plot. Available only
when 'Format' is set to
‘line' or 'uv' and
'RespCut' isnotsetto '3D".
The value true produces an
overlay plot and the value
false produces a waterfall
plot.

'PlotStyle' name-value pair
plots multiple frequencies on
the same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall’ is allowed only
when 'CoordinateSystem' is
set to 'rectangular' or 'uv'.

'Polarization' name-value
pair

Determines how to plot
polarized fields. Options are
‘None', 'Combined’, 'H', or
1 V 1 .

'Polarization' name-value
pair determines how to plot
polarized fields. The 'None'
option is removed. The options
'Combined', 'H', or 'V' are
unchanged.

'Unit' name-value pair

Determines the plot units.
Choose 'db', 'mag', 'pow', or
'dbi', where the default is
‘db'.

'Type' name-value pair, uses
equivalent options with different
names

plotRespons pattern

e

'db! "powerdb’

'mag’ 'efield'

"pow’ ‘power’

"dbi' 'directivit
y'

'Weights' name-value pair

Array element tapers (or

weights).

'Weights' name-value pair (no

change).

1-375

1 Alphabetical List

plotResponse Inputs

plotResponse Description

pattern Inputs

"AzimuthAngles' name-value
pair

Azimuth angles used to display
the antenna or array response.

AZ argument

'ElevationAngles' name-
value pair

Elevation angles used to display
the antenna or array response.

EL argument

'UGrid' name-value pair

Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-
value pair is set to 'uv'

'VGrid' name-value pair

Contains V-coordinates in UV-
space.

EL argument when
"CoordinateSystem' name-
value pair is set to 'uv'

See Also
patternAzimuth | pa

Introduced in R2015a

1-376

tternElevation

patternAzimuth

patternAzimuth

System object: phased.ConformalArray
Package: phased

Plot conformal array directivity or pattern versus azimuth

Syntax

patternAzimuth(sArray, FREQ)
patternAzimuth(sArray, FREQ,EL)
patternAzimuth(sArray, FREQ,EL,Name,Value)
PAT = patternAzimuth()

Description

patternAzimuth(sArray, FREQ) plots the 2-D array directivity pattern versus azimuth
(in dBi) for the array sArray at zero degrees elevation angle. The argument FREQ
specifies the operating frequency.

patternAzimuth(sArray, FREQ,EL), in addition, plots the 2-D array directivity pattern
versus azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When
EL is a vector, multiple overlaid plots are created.

patternAzimuth(sArray, FREQ, EL,Name,Value) plots the array pattern with
additional options specified by one or more Name, Value pair arguments.

PAT = patternAzimuth() returns the array pattern. PAT is a matrix whose entries

represent the pattern at corresponding sampling points specified by the 'Azimuth’
parameter and the EL input argument.

Input Arguments

sArray — Conformal array
System object

1-377

1 Alphabetical List

1-378

Conformal array, specified as a phased.ConformalArray System object.

Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as —Inf.
Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which
use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the directivity
is returned as —Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-
by-N real-valued row vector. The quantity N is the number of requested elevation
directions. Angle units are in degrees. The elevation angle must lie between -90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When
measured toward the z-axis, this angle is positive.

Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

patternAzimuth

You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb’

Displayed pattern type, specified as the comma-separated pair consisting of ' Type' and
one of
* 'directivity' — directivity pattern measured in dBi.

+ ‘'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

* 'power' — power pattern of the sensor or array defined as the square of the field
pattern.

* 'powerdb' — power pattern converted to dB.
Example: 'powerdb’
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'"PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed’',physconst('LightSpeed")

Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-
by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can
compute your own weights. In general, you apply Hermitian conjugation before using

1-379

1 Alphabetical List

1-380

weights in any Phased Array System Toolbox function or System object such as
phased.Radiator or phased.Collector. However, for the directivity, pattern,
patternAzimuth, and patternElevation methods of any array System object use the
steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-
by-P real-valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]

Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is
the number of azimuth values determined by the 'Azimuth' name-value pair argument.
The dimension N is the number of elevation angles, as determined by the EL input
argument.

Examples

Plot Azimuth Pattern of 5-Element Cross Sonar Array

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System
object. Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Plot the array patterns at two different elevation angles.

patternAzimuth

Construct and view array

N =5;

fc = 4000;

c = 1500.0;

lam = c/fc;

X = zeros(1,N);

y =1[-1,0,1,0,0]*lam/2;

z =1[0,0,0,-1,11*lam/2;
sMic = phased.OmnidirectionalMicrophoneElement(. ..
'FrequencyRange', [0,10000], '‘BackBaffled', true);
sArray = phased.ConformalArray('Element',sMic,...
'ElementPosition', [x;y;z], ...
"ElementNormal', [zeros(1,N);zeros(1,N)]1);
viewArray(sArray)

1-381

1 Alphabetical List

Array Geometry

L

Plot azimuth pattern for magnitude

fc = 4000;

c = 1500.0;

patternAzimuth(sArray, fc,[0,20],...
'"PropagationSpeed’,c, ...
'Type', 'efield')

1-382

patternAzimuth

0.0 deg elevation ®

Azim 20.0 deg elevation |kHZ)
k=0
120 5 &0
4
150 3 30
2

=T T \
\'I
180 4{

-150 -30

-120 -60
-90

Magnitude, Broadside at 0.00 ®

Plot azimuth pattern for directivity

patternAzimuth(sArray, fc,[0,20], ...
'PropagationSpeed’,c, ...
'Type', 'directivity"')

1-383

1 Alphabetical List

0.0 deg elevation ®

Azim 20.0 deg elevation |kHz)
= 0]
120 10 B0
—0_
150 ~10 T~ 30
-2y N\
3 W\
| |
180 | I
-150) __,'.l-"‘/-ED
-120 60
90
Directivity (dBi), Broadside at0.00 ®
More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or

array of sensor elements.

Higher directivity is desired when you want to transmit more radiation in a specific
direction. Directivity is the ratio of the transmitted radiant intensity in a specified
direction to the radiant intensity transmitted by an isotropic radiator with the same total

transmitted power

1-384

patternAzimuth

HUrad(9: ®)

D=4
P total

where U,4(8,9) is the radiant intensity of a transmitter in the direction (6,¢) and Py, is
the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission. When
converted to decibels, the directivity is denoted as dBi. For information on directivity,
read the notes on “Element Directivity” and “Array Directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity over
all directions in space to obtain the total transmitted power. There is a difference between
how that integration is performed when Antenna Toolbox antennas are used in a phased
array and when Phased Array System Toolbox antennas are used. When an array contains
Antenna Toolbox antennas, the directivity computation is performed using a triangular
mesh created from 500 regularly spaced points over a sphere. For Phased Array System
Toolbox antennas, the integration uses a uniform rectangular mesh of points spaced 1°
apart in azimuth and elevation over a sphere. There may be significant differences in
computed directivity, especially for large arrays.

See Also

pattern | patternElevation

Introduced in R2015a

1-385

1 Alphabetical List

1-386

patternElevation

System object: phased.ConformalArray
Package: phased

Plot conformal array array directivity or pattern versus elevation

Syntax

patternElevation(sArray, FREQ)
patternElevation(sArray, FREQ,AZ)
patternElevation(sArray, FREQ,AZ,Name,Value)
PAT = patternElevation()

Description

patternElevation(sArray, FREQ) plots the 2-D array directivity pattern versus
elevation (in dBi) for the array sArray at zero degrees azimuth angle. When AZ is a
vector, multiple overlaid plots are created. The argument FREQ specifies the operating
frequency.

patternElevation(sArray, FREQ,AZ), in addition, plots the 2-D element directivity
pattern versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a
vector, multiple overlaid plots are created.

patternElevation(sArray, FREQ,AZ,Name,Value) plots the array pattern with
additional options specified by one or more Name, Value pair arguments.

PAT = patternElevation() returns the array pattern. PAT is a matrix whose
entries represent the pattern at corresponding sampling points specified by the
'"Elevation’' parameter and the AZ input argument.

Input Arguments

sArray — Conformal array
System object

patternElevation

Conformal array, specified as a phased.ConformalArray System object.

Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency
units are in hertz.

* For an antenna or microphone element, FREQ must lie within the range of values
specified by the FrequencyRange or the FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as —Inf.
Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which
use the FrequencyVector property.

* For an array of elements, FREQ must lie within the frequency range of the elements
that make up the array. Otherwise, the array produces no response and the directivity
is returned as —Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-
by-N real-valued row vector where N is the number of desired azimuth directions. Angle
units are in degrees. The azimuth angle must lie between -180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis.

Example: [0,10,20]

Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the

argument name and Value is the corresponding value. Name must appear inside quotes.

1-387

1 Alphabetical List

1-388

You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb’

Displayed pattern type, specified as the comma-separated pair consisting of ' Type' and
one of
* 'directivity' — directivity pattern measured in dBi.

+ ‘'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed
pattern is for the scalar sound field.

* 'power' — power pattern of the sensor or array defined as the square of the field
pattern.

* 'powerdb' — power pattern converted to dB.
Example: 'powerdb’
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'"PropagationSpeed' and a positive scalar in meters per second.

Example: 'PropagationSpeed’',physconst('LightSpeed")

Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector

Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-
by-1 complex-valued column vector. Array weights are applied to the elements of the
array to produce array steering, tapering, or both. The dimension M is the number of
elements in the array.

Note Use complex weights to steer the array response toward different directions. You
can create weights using the phased.SteeringVector System object or you can
compute your own weights. In general, you apply Hermitian conjugation before using

patternElevation

weights in any Phased Array System Toolbox function or System object such as
phased.Radiator or phased.Collector. However, for the directivity, pattern,
patternAzimuth, and patternElevation methods of any array System object use the
steering vector without conjugation.

Example: 'Weights',ones(10,1)

Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and
a 1-by-P real-valued row vector. Elevation angles define where the array pattern is
calculated.

Example: 'Elevation', [-90:2:90]
Data Types: double

Output Arguments

PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is
the number of elevation angles determined by the 'Elevation' name-value pair
argument. The dimension N is the number of azimuth angles determined by the AZ
argument.

Examples

Plot Elevation Pattern of 5-Element Cross Sonar Array

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System
object. Assume the operating frequency is 4 kHz. A typical value for the speed of sound in
seawater is 1500.0 m/s. Plot the array patterns at two different azimuth angles.

1-389

1 Alphabetical List

1-390

Construct and view array

N =5;

fc = 4000;

c = 1500.0;

lam = c/fc;

X = zeros(1,N);

y =1[-1,0,1,0,0]*lam/2;

z =1[0,0,0,-1,11*lam/2;
sMic = phased.OmnidirectionalMicrophoneElement(. ..
'FrequencyRange', [0,10000], '‘BackBaffled', true);
sArray = phased.ConformalArray('Element',sMic,...
'ElementPosition', [x;y;z], ...
"ElementNormal', [zeros(1,N);zeros(1,N)]1);
viewArray(sArray)

patternElevation

Array Geometry

®
@ @ @
@
y }';-:.: - : '.I IT
Y axis = 375 mim
£ axis = 375 mim
Plot magnitude elevation pattern
fc = 4000;
¢ = 1500.0;

patternElevation(sArray,fc,[0,901,...
'PropagationSpeed’,c, ...
'Type', 'efield"')

1-391

1 Alphabetical List

0.0 deg azimuth &

Elevat 90.0 deg azimuth A kHz)
200
120 5 B0
4
150 3 30
2
— __\-_\-\-\-""-\-\\
180 f;:} 0
;““--____]
-150 =30
=120 =60

-90

Magnitude, Broadside at 0.00 ®

Plot directivity elevation pattern

Plot the pattern for elevation angles between -60 and 6- degrees at 0.1 degree resolution.

patternElevation(sArray,fc,[0,90], ...
'PropagationSpeed’,c, ...
'Type', 'directivity’,...
'"Elevation',[-60:0.1:601)

1-392

patternElevation

0.0 deg azimuth &

Elevat 90.0 deg azimuth B kHz)
=0
120 10 60
a
150 o N~ 30
N
Mo
_EH \
B \
- e R |
180 - ! 0
-""‘"-..-_..___) ' I|
N /
} /
-150 o __,f_.-" -30
=120 =60
90

Directivity (dBi), Broadside at0.00 ®

More About

Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or
array of sensor elements.

Higher directivity is desired when you want to transmit more radiation in a specific
direction. Directivity is the ratio of the transmitted radiant intensity in a specified
direction to the radiant intensity transmitted by an isotropic radiator with the same total
transmitted power

1-393

1 Alphabetical List

1-394

HUrad(9: ®)

D=4
P total

where U,4(8,9) is the radiant intensity of a transmitter in the direction (6,¢) and Py, is
the total power transmitted by an isotropic radiator. For a receiving element or array,
directivity measures the sensitivity toward radiation arriving from a specific direction.
The principle of reciprocity shows that the directivity of an element or array used for
reception equals the directivity of the same element or array used for transmission. When
converted to decibels, the directivity is denoted as dBi. For information on directivity,
read the notes on “Element Directivity” and “Array Directivity”.

Computing directivity requires integrating the far-field transmitted radiant intensity over
all directions in space to obtain the total transmitted power. There is a difference between
how that integration is performed when Antenna Toolbox antennas are used in a phased
array and when Phased Array System Toolbox antennas are used. When an array contains
Antenna Toolbox antennas, the directivity computation is performed using a triangular
mesh created from 500 regularly spaced points over a sphere. For Phased Array System
Toolbox antennas, the integration uses a uniform rectangular mesh of points spaced 1°
apart in azimuth and elevation over a sphere. There may be significant differences in
computed directivity, especially for large arrays.

See Also
pattern | patternAzimuth

Introduced in R2015a

plotResponse

plotResponse

System object: phased.ConformalArray
Package: phased

Plot response pattern of array

Syntax

plotResponse(H, FREQ,V)
plotResponse(H, FREQ,V,Name, Value)
hPlot = plotResponse()

Description

plotResponse(H, FREQ, V) plots the array response pattern along the azimuth cut,
where the elevation angle is 0. The operating frequency is specified in FREQ. The
propagation speed is specified in V.

plotResponse(H, FREQ,V,Name,Value) plots the array response with additional
options specified by one or more Name, Value pair arguments.

hPlot = plotResponse() returns handles of the lines or surface in the figure
window, using any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie
within the range specified by a property of H. That property is named FrequencyRange
or FrequencyVector, depending on the type of element in the array. The element has no

1-395

1 Alphabetical List

1-396

response at frequencies outside that range. If you set the 'RespCut' property of H to
'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple
frequency responses on the same axes.

v

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

CutAngle

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or 'ELl"'.If
RespCutis 'Az', CutAngle must be between -90 and 90. If RespCut is 'El"',
CutAngle must be between -180 and 180.

Default: 0
Format

Format of the plot, using one of 'Line"', 'Polar', or 'UV'. If you set Format to 'UV",
FREQ must be a scalar.

Default: 'Line’
NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot
the response pattern without normalizing it. This parameter is not applicable when you
set the Unit parameter value to 'dbi’.

Default: true

plotResponse

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to
plot pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ
must be a vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut isnot '3D".
Default: true
Polarization

Specify the polarization options for plotting the array response pattern. The allowable
values are | 'None' | 'Combined' | 'H' | 'V' | where

* 'None' specifies plotting a nonpolarized response pattern

* 'Combined' specifies plotting a combined polarization response pattern
* 'H' specifies plotting the horizontal polarization response pattern

* 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This
parameter is not applicable when you set the Unit parameter value to 'dbi’.

Default: 'None'
RespCut

Cut of the response. Valid values depend on Format, as follows:

 IfFormatis 'Line' or 'Polar’, the valid values of RespCut are 'Az', 'E1l', and
'3D'. The default is 'Az".

 IfFormatis 'UV', the valid values of RespCut are 'U' and '3D"'. The defaultis 'U".
If you set RespCut to '3D"', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db"', 'mag', 'pow’, or 'dbi"'. This parameter

determines the type of plot that is produced.

1-397

1 Alphabetical List

Unit value Plot type

db power pattern in dB scale
mag field pattern

pow power pattern

dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M
matrix. The dimension N is the number of elements in the array. The interpretation of M
depends upon whether the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose

N-by-1 column vector Scalar or 1-by-M row vector |Apply one set of weights for
the same single frequency
or all M frequencies.

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

N-by-M matrix 1-by-M row vector Apply each of the M
different columns in
Weights for the
corresponding frequency in
FREQ.

AzimuthAngles

Azimuth angles for plotting array response, specified as a row vector. The
AzimuthAngles parameter sets the display range and resolution of azimuth angles for
visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameter is set to 'Az"' or '3D' and the Format parameter is setto 'Line' or
'"Polar'. The values of azimuth angles should lie between -180° and 180° and must be in
nondecreasing order. When you set the RespCut parameter to '3D"', you can set the
AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

1-398

plotResponse

ElevationAngles

Elevation angles for plotting array response, specified as a row vector. The
ElevationAngles parameter sets the display range and resolution of elevation angles
for visualizing the radiation pattern. This parameter is allowed only when the RespCut
parameteris set to 'E1l"' or '3D"' and the Format parameteris setto 'Line' or
'"Polar'. The values of elevation angles should lie between -90° and 90° and must be in
nondecreasing order. When yous set the RespCut parameter to '3D', you can set the
ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]
UGrid

U coordinate values for plotting array response, specified as a row vector. The UGrid
parameter sets the display range and resolution of the U coordinates for visualizing the
radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameteris setto 'U' or '3D"'. The values of
UGrid should be between -1 and 1 and should be specified in nondecreasing order. You
can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]
VGrid

V coordinate values for plotting array response, specified as a row vector. The VGrid
parameter sets the display range and resolution of the V coordinates for visualizing the
radiation pattern in U/V space. This parameter is allowed only when the Format
parameter is set to 'UV' and the RespCut parameter is set to '3D"'. The values of VGrid
should be between -1 and 1 and should be specified in nondecreasing order. You can set
VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. Plot a normalized azimuth power pattern at 0

1-399

1 Alphabetical List

degrees elevation. Assume the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

= 8;

zang = (0:N-1)*360/N-180;

CA = phased.ConformalArray(...
'ElementPosition', [cosd(azang);sind(azang);zeros(1,N)],...
'ElementNormal', [azang;zeros(1,N)]);

fc = 1e9;

c = physconst('LightSpeed');

pattern(sCA,fc,[-180:180],0,...

'PropagationSpeed',c, 'Type', 'powerdb’, ...

'CoordinateSystem', 'polar')

N
a
s

Azimuth Cut (elevation angle = 0.0°)
90

120 _—~ 0 60
C \ |r’ Va
~\ \l [)
150 \ e ™ 30
'H-.\ I'.I -I|I5 =
{_\ MH\‘\ v ,e”f
. H%‘h\h '-.._._.. = o }
H“““-u_,__ S) o -
TN\ —
180 2 - + () 0
—— _—_r_—_—__'—_—-'_'- _“‘—h—_______—._ —j
- \ Sy T
.-"'f’ "' i ﬂl ..l"" \h\"-‘.‘m
--.____,.-" |I:II H“""‘-\-.___H_
B 4
-150 Ny || \ e =30
L (||x
N \ »
-120 ~ &0
90

Mormalized Power (dB), Broadside at 0.00 °

1-400

plotResponse

Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the
ConformalArray System object. Assume the array is one meter in diameter. Using the
ElevationAngles parameter, restrict the display to +/-40 degrees in 0.1 degree
increments. Assume the operating frequency is 4 kHz. A typical value for the speed of
sound in seawater is 1500.0 m/s.

Construct the array

N = 31;

theta = (0:N-1)*360/N-180;

Radius = 0.5;

sMic = phased.OmnidirectionalMicrophoneElement(. ..
'FrequencyRange', [0,10000], 'BackBaffled', true);

sArray = phased.ConformalArray('Element',sMic,...
'"ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)l, ...
"ElementNormal', [ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;

c = 1500.0;

pattern(sArray,fc,0,[-40:0.1:401], ...
'PropagationSpeed’,c, ...
'CoordinateSystem', 'polar', ...
'Type', 'efield')

1-401

1 Alphabetical List

Elevation Cut (azimuth angle = 0.0°)
90

120 7 50
Og
150 Cg 30
Og
a o
A
e S
180 — 1 A
HH"&.E,
-150 -30
=120 =60
90

Mormalized Magnitude, Broadside at 0.00 °

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40], ...
'PropagationSpeed’,c, ...
'CoordinateSystem', 'polar', ...
'Type', 'directivity')

1-402

plotResponse

Elevation Cut (azimuth angle = 0.0°)
80

120 60
10
a
150 30
(=]Ia e _.-\'I
~
/" i
W T
sl ™
-3 _,_.-F“""'H-‘ \
180 <)0
"'\-\..__‘-"--c —) /
"‘».____h.- \\\.:I
-150 -30
=120 60
=90
Directivity (dBi), Broadside at0.00 ®
See Also

azel2uv | uv2azel

1-403

1 Alphabetical List

step

System object: phased.ConformalArray
Package: phased

Output responses of array elements

Syntax

RESP = step(H, FREQ, ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

RESP = step(H,FREQ,ANG) returns the response of the array elements, RESP, at
operating frequencies specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

Array object

1-404

step

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values
are within the range specified by a property of H. Element. That property is named
FrequencyRange or FrequencyVector, depending on the type of element in the array.
The element has zero response at frequencies outside that range.

ANG
Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form
[azimuth; elevation]. The azimuth angle must lie between -180° and 180°, inclusive.
The elevation angle must lie between -90° and 90°, inclusive.

If ANG is a row vector of length M, each element specifies the azimuth angle of the
direction. In this case, the corresponding elevation angle is assumed to be 0°.

Output Arguments

RESP

Voltage responses of the phased array. The output depends on whether the array supports
polarization or not.

» If the array is not capable of supporting polarization, the voltage response, RESP, has
the dimensions N-by-M-by-L. N is the number of elements in the array. The dimension
M is the number of angles specified in ANG. L is the number of frequencies specified in
FREQ. For any element, the columns of RESP contain the responses of the array
elements for the corresponding direction specified in ANG. Each of the L pages of RESP
contains the responses of the array elements for the corresponding frequency
specified in FREQ.

» If the array is capable of supporting polarization, the voltage response, RESP, is a
MATLAB struct containing two fields, RESP.H and RESP.V. The field, RESP.H,
represents the array’s horizontal polarization response, while RESP.V represents the
array’s vertical polarization response. Each field has the dimensions N-by-M-by-L. N is
the number of elements in the array, and M is the number of angles specified in ANG. L
is the number of frequencies specified in FREQ. Each column of RESP contains the
responses of the array elements for the corresponding direction specified in ANG. Each

1-405

1 Alphabetical List

1-406

of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples

Response of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array
(UCA) of isotropic antenna elements. The radius of the array is one meter. Assume the
operating frequency is 1 GHz and the wave propagation speed is the speed of light.

N = 8;

azang = (0:N-1)*360/N-180;

sCA = phased.ConformalArray(...
'"ElementPosition', [cosd(azang);sind(azang);zeros(1,N)],...
"ElementNormal', [azang;zeros(1,N)]1);

Get the element response at 35 degrees azimuth and 5 degrees elevation.
fc = 1e9;

ang = [30;5];

resp = step(sCA,fc,anqg)

resp = 8x1

RPHRERRPRP PR

See Also
phitheta2azel | uv2azel

viewArray

viewArray

System object: phased.ConformalArray
Package: phased

View array geometry

Syntax

viewArray (H)
viewArray(H,Name,Value)
hPlot = viewArray()

Description

viewArray (H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options

specified by one or more Name, Value pair arguments.

hPlot = viewArray/() returns the handle of the array elements in the figure

window. All input argumats described for the previous syntaxes also apply here.

Input Arguments

H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the

argument name and Value is the corresponding value. Name must appear inside quotes.

You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

1-407

1 Alphabetical List

1-408

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector
must be an integer between 1 and the number of elements. You can also specify the value
"AL1"' to show the indices of all elements of the array or 'None' to suppress indices.
Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this
value to false to plot the elements without showing normal directions.

Default: false

ShowTaper

Set this value to true to specify whether to change the element color brightness in
proportion to the element taper magnitude. When this value is set to false, all elements
are drawn with the same color.

Default: false

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments

hPlot

Handle of array elements in figure window.

Examples

viewArray

View Uniform Circular Array

Display the element positions and normal directions of all elements of an 8-element
uniform circular array.

Create the uniform circular array
N = 8;

azang = (0:N-1)*360/N - 180;

ha = phased.ConformalArray(...

'"ElementPosition', [cosd(azang);sind(azang);zeros(1,N)],...
"ElementNormal', [azang;zeros(1,N)]1);

Display the positions and normal directions of the elements

viewArray(ha, 'ShowNormals', true);

1-409

1 Alphabetical List

Array Geometry

See Also

phased.ArrayResponse

Topics
Phased Array Gallery

1-410

I

phased.ConstantGammaClutter

phased.ConstantGammacClutter

Package: phased

Constant gamma clutter simulation

Description

The ConstantGammaClutter object simulates clutter.

To compute the clutter return:

Define and set up your clutter simulator. See “Construction” on page 1-412.

Call step to simulate the clutter return for your system according to the properties
of phased.ConstantGammaClutter. The behavior of step is specific to each object
in the toolbox.

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

* The radar system is monostatic.

* The propagation is in free space.

* The terrain is homogeneous.

* The clutter patch is stationary during the coherence time. Coherence time indicates
how frequently the software changes the set of random numbers in the clutter
simulation.

* Because the signal is narrowband, the spatial response and Doppler shift can be
approximated by phase shifts.

* The radar system maintains a constant height during simulation.
* The radar system maintains a constant speed during simulation.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

1-411

1 Alphabetical List

1-412

Construction

H = phased.ConstantGammaClutter creates a constant gamma clutter simulation
System object, H. This object simulates the clutter return of a monostatic radar system
using the constant gamma model.

H = phased.ConstantGammaClutter(Name,Value) creates a constant gamma
clutter simulation object, H, with additional options specified by one or more Name, Value
pair arguments. Name is a property name on page 1-412, and Value is the corresponding
value. Name must appear inside single quotes (' '). You can specify several name-value
pair arguments in any order as Namel,Valuel,..,NameN, ValueN.

Properties

Sensor
Handle of sensor

Specify the sensor as an antenna element object or as an array object whose Element
property value is an antenna element object. If the sensor is an array, it can contain
subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.
Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default
value corresponds to 300 MHz.

Default: 3e8

phased.ConstantGammaClutter

SampleRate
Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1
MHz.

Default: 1e6
PRF
Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The
pulse repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF.
ThePRF must satisfy these restrictions:

* The product of PRF and PulseWidth must be less than or equal to one. This condition
expresses the requirement that the pulse width is less than one pulse repetition
interval. For the phase-coded waveform, the pulse width is the product of the chip
width and number of chips.

* The ratio of sample rate to any element of PRF must be an integer. This condition
expresses the requirement that the number of samples in one pulse repetition interval
is an integer.

You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.

* When PRFSelectionInputPort is false, you set the PRF using properties only. You
can

+ implement a constant PRF by specifying PRF as a positive real-valued scalar.

* implement a staggered PRF by specifying PRF as a row vector with positive real-
valued entries. Then, each call to the step method uses successive elements of this
vector for the PRF. If the last element of the vector is reached, the process
continues cyclically with the first element of the vector.

* When PRFSelectionInputPort is true, you can implement a selectable PRF by
specifying PRF as a row vector with positive real-valued entries. But this time, when
you execute the step method, select a PRF by passing an argument specifying an
index into the PRF vector.

1-413

1 Alphabetical List

1-414

In all cases, the number of output samples is fixed when you set the OutputFormat
property to 'Samples'. When you use a varying PRF and set the QutputFormat
property to 'Pulses', the number of samples can vary.

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property
to false, the step method uses the values set in the PRF property. When you set this
property to true, you pass an index argument into the step method to select a value
from the PRF vector.

Default: false

Gamma

Terrain gamma value

Specify the y value used in the constant y clutter model, as a scalar in decibels. The y
value depends on both terrain type and the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of | 'Flat' | 'Curved' |. When
you set this property to 'Flat', the earth is assumed to be a flat plane. When you set this
property to 'Curved', the earth is assumed to be a sphere.

Default: 'Flat'

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward from the surface as a
nonnegative scalar.

phased.ConstantGammaClutter

Default: 300

PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in meters per second.
Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector in the form
[AzimuthAngle; ElevationAngle] in degrees. The default value of this property indicates
that the platform moves perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local coordinate system of the
radar antenna or antenna array. Azimuth angle must be between -180 and 180 degrees.
Elevation angle must be between -90 and 90 degrees.

Default: [90;0]
BroadsideDepressionAngle
Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the radar antenna array. This
value is a scalar. The broadside is defined as zero degrees azimuth and zero degrees
elevation. The depression angle is measured downward from horizontal.

Default: 0
MaximumRange
Maximum range for clutter simulation

Specify the maximum range in meters for the clutter simulation as a positive scalar. The
maximum range must be greater than the value specified in the PlatformHeight
property.

Default: 5000

1-415

1 Alphabetical List

1-416

AzimuthCoverage
Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The clutter simulation
covers a region having the specified azimuth span, symmetric to 0 degrees azimuth.
Typically, all clutter patches have their azimuth centers within the region, but the
PatchAzimuthWidth value can cause some patches to extend beyond the region.

Default: 60

PatchAzimuthwidth

Azimuth span of each clutter patch

Specify the azimuth span of each clutter patch in degrees as a positive scalar.
Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit signal in the step syntax.
Set this property to false omit the transmit signal in the step syntax. The false option
is less computationally expensive; to use this option, you must also specify the
TransmitERP property.

Default: false
TransmitERP
Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the radar system in watts as a
positive scalar. This property applies only when you set the TransmitSignalInputPort
property to false.

Default: 5000
CoherenceTime

Clutter coherence time

phased.ConstantGammaClutter

Specify the coherence time in seconds for the clutter simulation as a positive scalar. After
the coherence time elapses, the step method updates the random numbers it uses for the
clutter simulation at the next pulse. A value of inf means the random numbers are never
updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses' | 'Samples' |. When you set
the OutputFormat property to 'Pulses’, the output of the step method is in the form
of multiple pulses. In this case, the number of pulses is the value of the NumPulses
property.

When you set the OutputFormat property to 'Samples', the output of the step method
is in the form of multiple samples. In this case, the number of samples is the value of the
NumSamples property. In staggered PRF applications, you might find the 'Samples'
option more convenient because the step output always has the same matrix size.
Default: 'Pulses’

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This
property applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer.
Typically, you use the number of samples in one pulse. This property applies only when

you set the OutputFormat property to 'Samples'.

Default: 100

1-417

1 Alphabetical List

SeedSource
Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

"Auto’ The default MATLAB random number generator produces
the random numbers. Use 'Auto’ if you are using this
object with Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator
to produce random numbers. The Seed property of this
object specifies the seed of the random number generator.
Use 'Property' if you want repeatable results and are not
using this object with Parallel Computing Toolbox software.

Default: 'Auto’
Seed
Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232-
1. This property applies when you set the SeedSource property to 'Property’.

Default: 0

Methods

reset Reset random numbers and time count for clutter simulation
step Simulate clutter using constant gamma model

Common to All System Objects

release |Allow System object property value changes

Examples

1-418

phased.ConstantGammaClutter

Simulate Clutter for System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective
transmitted power of the radar system is 5 kW.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object, x).

Set up the characteristics of the radar system. This system uses a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is the speed of light, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2 km/s. The mainlobe has a depression angle of 30°.

Nele = 4;
¢ = physconst('Lightspeed');
fc = 300.0e6;

lambda = c/fc;

array = phased.ULA('NumElements',Nele, 'ElementSpacing',lambda/2);
fs = 1.0e6;

prf = 10.0e3;

height = 1000.0;

direction = [90;0];

speed = 2.0e3;

depang = 30.0;

Create the clutter simulation object. The configuration assumes the earth is flat. The
maximum clutter range of interest is 5 km, and the maximum azimuth coverage is =60°.

Rmax = 5000.0;

Azcov = 120.0;

tergamma = 0.0;

tpower = 5000.0;

clutter = phased.ConstantGammaClutter('Sensor',array,...
'"PropagationSpeed',c, 'OperatingFrequency', fc, 'PRF',prf,...
'SampleRate', fs, 'Gamma',tergamma, 'EarthModel', 'Flat', ...
'TransmitERP', tpower, 'PlatformHeight',6 height, ...
'PlatformSpeed',speed, 'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang, 'MaximumRange',Rmax, ...
'"AzimuthCoverage',Azcov, 'SeedSource', 'Property’', ...
'Seed',40547);

Simulate the clutter return for 10 pulses.

1-419

1 Alphabetical List

Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
sig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array, ...
'OperatingFrequency', fc, 'PropagationSpeed',c, 'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)), 'NormalizeDoppler', true)

Angle-Doppler Response Pattern

05
50
0.4
60
0.3
g
% 0.2 70
= 04 —
& 50 3
[=H
X z
a0 £
0.1
J:
£ 02 100
$
Sl -110
-0.4
120
05

-80 60 40 -20 0 20 40 60 B8O
Angle (degrees)

1-420

phased.ConstantGammaClutter

Simulate Clutter Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the
transmit signal of the radar system when creating clutter. In this case, you do not use the
TransmitERP property.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object, x).

Set up the characteristics of the radar system. This system has a 4-element uniform linear
array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is
the speed of light, and the operating frequency is 300 MHz. The radar platform is flying 1
km above the ground with a path parallel to the ground along the array axis. The platform
speed is 2 km/s. The mainlobe has a depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;

lambda = c/fc;

ula = phased.ULA('NumElements',f Nele, 'ElementSpacing', lambda/2);
fs = 1.0e6;

prf = 10.0e3;

height = 1.0e3;

direction = [90;0];

speed = 2.0e3;

depang = 30;

Create the clutter simulation object and configure it to accept an transmit signal as an
input argument. The configuration assumes the earth is flat. The maximum clutter range
of interest is 5 km, and the maximum azimuth coverage is =60°.

Rmax = 5000.0;

Azcov = 120.0;

tergamma = 0.0;

clutter = phased.ConstantGammaClutter('Sensor',ula,...
'PropagationSpeed',c, 'OperatingFrequency',fc, 'PRF',prf, ...
'SampleRate', fs, 'Gamma',tergamma, 'EarthModel', 'Flat', ...
'TransmitSignalInputPort',true, 'PlatformHeight', height, ...
'PlatformSpeed', speed, 'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang, '‘MaximumRange',Rmax, ...
'AzimuthCoverage',6Azcov, 'SeedSource', 'Property’', ...
'Seed',40547);

1-421

1 Alphabetical List

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an
input argument. The software computes the effective transmitted power of the signal. The
transmit signal is a rectangular waveform with a pulse width of 2 ps.

tpower = 5.0e3;
pw = 2.0e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse

sig(:,:,m) = step(clutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.
response = phased.AngleDopplerResponse('SensorArray',ula,...

'OperatingFrequency’', fc, 'PropagationSpeed’',c, 'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)), 'NormalizeDoppler', true)

1-422

phased.ConstantGammaClutter

Angle-Doppler Response Pattern

o © o o
- — 1] L
Power (dB)

Mormalized Doppler Frequency
=]
P o

D37

0.4

0.5
-80 60 40 -20 0] 20 40 60 B0

Angle (degrees)

References

[1] Barton, David. “Land Clutter Models for Radar Design and Analysis,” Proceedings of
the IEEE. Vol. 73, Number 2, February, 1985, pp. 198-204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House,
2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar Design Principles,
2nd Ed. Mendham, NJ: SciTech Publishing, 1999.

1-423

1 Alphabetical List

1-424

J

[4] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,’
Technical Report 1015, MIT Lincoln Laboratory, December, 1994.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

phased.BarrageJammer | phased.gpu.ConstantGammaClutter | phitheta2azel |
surfacegamma | uv2azel

Topics

Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“DPCA Pulse Canceller to Reject Clutter”

“Clutter Modeling”

Introduced in R2012a

reset

reset

System object: phased.ConstantGammaClutter
Package: phased

Reset random numbers and time count for clutter simulation

Syntax

reset(H)

Description

reset (H) resets the states of the ConstantGammaClutter object, H. This method
resets the random number generator state if the SeedSource property is set to
"Property'. This method resets the elapsed coherence time. Also, if the PRF property is
a vector, the next call to step uses the first PRF value in the vector.

1-425

1 Alphabetical List

1-426

step

System object: phased.ConstantGammaClutter
Package: phased

Simulate clutter using constant gamma model

Syntax

Y = step(H)

Y = step(H,X)

Y = step(H,STEERANGLE)

Y = step(H,X,WS)

Y = step(H, PRFIDX)

Y = step(H,X,STEERANGLE)
Description

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, you can call the object with arguments, as if it were a
function. For example, y = step(obj,x) andy = obj(x) perform equivalent
operations.

Y = step(H) computes the collected clutter return at each sensor. This syntax is
available when you set the TransmitSignalInputPort property to false.

Y = step(H, X) specifies the transmit signal in X. Transmit signal refers to the output of
the transmitter while it is on during a given pulse. This syntax is available when you set
the TransmitSignalInputPort property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering angle. This
syntax is available when you configure H so that H.Sensor is an array that contains
subarrays and H.Sensor.SubarraySteering is either 'Phase' or 'Time".

step

Y = step(H,X,WS) uses WS as weights applied to each element within each subarray. To
use this syntax, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of the array to 'Custom'.

Y = step(H,PRFIDX) uses the index, PRFIDX, to select the PRF from a predetermined
list of PRF's specified by the PRF property. To enable this syntax, set the
PRFSelectionInputPort to true.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax is available
when you configure H so that H. TransmitSignalInputPort is true, H.Sensor is an

array that contains subarrays, and H.Sensor.SubarraySteering is either 'Phase' or
'Time'.

Input Arguments

H

Constant gamma clutter object.

X

Transmit signal, specified as a column vector.
STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a
scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth
angle must be between -180 degrees and 180 degrees, and the elevation angle must be
between -90 degrees and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation
angle is assumed to be 0.

WS

Subarray element weights

1-427

1 Alphabetical List

Subarray element weights, specified as complex-valued Ngz-by-N matrix or 1-by-N cell
array where N is the number of subarrays. These weights are applied to the individual
elements within a subarray.

Subarray Element Weights

Sensor Array Subarray Weights

phased.ReplicatedSubarray All subarrays have the same dimensions
and sizes. Then, the subarray weights form
an Ngg-by-N matrix. Ngg is the number of
elements in each subarray and N is the
number of subarrays. Each column of WS
specifies the weights for the corresponding
subarray.

phased.PartitionedArray When subarrays do not have the same
dimensions and sizes, you can specify
subarray weights as

* an Ngg-by-N matrix, where Ngg is now
the number of elements in the largest
subarray. The first Q entries in each
column are the element weights for the
subarray where Q is the number of
elements in the subarray.

* a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column
vectors have lengths equal to the
number of elements in the
corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and
set the SubarraySteering property of the array to 'Custom’.

PRFIDX

Index of pulse repetition frequency, specified as a positive integer. The index selects one
of the entries specified in the PRF property as the PRF for the next transmission.

1-428

step

Example: 3

Dependencies

To enable this argument, set the PRFSelectionInputPort to true.

Output Arguments

Y

Collected clutter return at each sensor. Y has dimensions N-by-M matrix. If H.Sensor
contains subarrays, M is the number of subarrays in the radar system. Otherwise it is the
number of sensors. When you set the OutputFormat property to 'Samples', N is
defined by the NumSamples property. When you set the OutputFormat property to
'Pulses’, N is the total number of samples in the next L pulses. In this case, L is defined
by the NumPulses property.

Examples

Simulate Clutter for System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective
transmitted power of the radar system is 5 kW.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(myObject, x).

Set up the characteristics of the radar system. This system uses a 4-element uniform
linear array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation
speed is the speed of light, and the operating frequency is 300 MHz. The radar platform is
flying 1 km above the ground with a path parallel to the ground along the array axis. The
platform speed is 2 km/s. The mainlobe has a depression angle of 30°.

Nele = 4;
¢ = physconst('Lightspeed');
fc = 300.0e6;

lambda = c/fc;
array = phased.ULA('NumElements',Nele, 'ElementSpacing', lambda/2);

1-429

1 Alphabetical List

fs = 1.0e6;

prf = 10.0e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;

Create the clutter simulation object. The configuration assumes the earth is flat. The
maximum clutter range of interest is 5 km, and the maximum azimuth coverage is =60°.

Rmax = 5000.0;

Azcov = 120.0;

tergamma = 0.0;

tpower = 5000.0;

clutter = phased.ConstantGammaClutter('Sensor',array,...
'PropagationSpeed',c, 'OperatingFrequency',fc, 'PRF',prf, ...
'SampleRate', fs, 'Gamma',tergamma, 'EarthModel', 'Flat', ...
'TransmitERP', tpower, 'PlatformHeight',6 height, ...
'PlatformSpeed', speed, 'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang, '‘MaximumRange',Rmax, ...
'AzimuthCoverage',6Azcov, 'SeedSource', 'Property’', ...
'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
sig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.
response = phased.AngleDopplerResponse('SensorArray',array,...

'OperatingFrequency', fc, 'PropagationSpeed',c, 'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)), 'NormalizeDoppler', true)

1-430

step

Angle-Doppler Response Pattern

= © =2 o o o
e = 5] 5] f-9 n
Power (dB)

Mormalized Doppler Frequency
=]
P o

-80 60 40 -20 0 20 40 60 80
Angle (degrees)

Simulate Clutter Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the
transmit signal of the radar system when creating clutter. In this case, you do not use the
TransmitERP property.

Note: This example runs only in R2016b or later. If you are using an earlier release,
replace each call to the function with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object,x).

1-431

1 Alphabetical List

1-432

Set up the characteristics of the radar system. This system has a 4-element uniform linear
array (ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is
the speed of light, and the operating frequency is 300 MHz. The radar platform is flying 1
km above the ground with a path parallel to the ground along the array axis. The platform
speed is 2 km/s. The mainlobe has a depression angle of 30°.

Nele = 4;

¢ = physconst('Lightspeed');
fc = 300.0e6;

lambda = c/fc;

ula = phased.ULA('NumElements',Nele, 'ElementSpacing', lambda/2);
fs = 1.0e6;

prf = 10.0e3;

height = 1.0e3;

direction = [90;0];

speed = 2.0e3;

depang = 30;

Create the clutter simulation object and configure it to accept an transmit signal as an
input argument. The configuration assumes the earth is flat. The maximum clutter range
of interest is 5 km, and the maximum azimuth coverage is +60°.

Rmax = 5000.0;

Azcov = 120.0;

tergamma = 0.0;

clutter = phased.ConstantGammaClutter('Sensor',ula,...
'PropagationSpeed',c, 'OperatingFrequency', fc, 'PRF',prf, ...
'SampleRate', fs, 'Gamma',tergamma, 'EarthModel', 'Flat', ...
'TransmitSignalInputPort',true, 'PlatformHeight', height, ...
'PlatformSpeed',speed, 'PlatformDirection',direction,...
'BroadsideDepressionAngle',depang, 'MaximumRange',Rmax, ...
'AzimuthCoverage',6Azcov, 'SeedSource', 'Property’', ...
'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an
input argument. The software computes the effective transmitted power of the signal. The
transmit signal is a rectangular waveform with a pulse width of 2 ps.

tpower = 5.0e3;

pw = 2.0e-6;

X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;

Npulse = 10;

sig = zeros(Nsamp,Nele,Npulse);

step

Mormalized Doppler Frequency

=
(5]

2
(%)

=
=l

o=

S

S
(X

S
Cad

S
f=H

o
n

for m = 1:Npulse
sig(:,:,m) = step(clutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',ula,...
'OperatingFrequency', fc, 'PropagationSpeed',c, 'PRF',prf);

plotResponse(response,shiftdim(sig(20,:,:)), 'NormalizeDoppler', true)

Angle-Doppler Response Pattern

-80 60 40 -20 1] 20 40 60 80
Angle (degrees)

Power (dB)

1-433

1 Alphabetical List

1-434

Tips

The clutter simulation that ConstantGammaClutter provides is based on these
assumptions:

The radar system is monostatic.
The propagation is in free space.
The terrain is homogeneous.

The clutter patch is stationary during the coherence time. Coherence time indicates
how frequently the software changes the set of random numbers in the clutter
simulation.

Because the signal is narrowband, the spatial response and Doppler shift can be
approximated by phase shifts.

The radar system maintains a constant height during simulation.
The radar system maintains a constant speed during simulation.

See Also

Topics

Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“DPCA Pulse Canceller to Reject Clutter”

“Clutter Modeling”

phased.CosineAntennaElement

phased.CosineAntennaElement

Package: phased

Cosine antenna element

Description

The CosineAntennaElement object models an antenna with a cosine response on page
1-450 in both azimuth and elevation. The main response axis (MRA) points to 0° azimuth
and 0° elevation in the antenna coordinate system. When placed in a linear array, the
MRA is normal to the array axis (see, for example, phased.ULA). When placed in a planar
array, the MRA points along the array normal (see, for example, phased . URA).

To compute the response of the antenna element for specified directions:

1 Create the phased.CosineAntennaElement object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

This antenna element does not support polarization.

Creation

Syntax

antenna
antenna

phased.CosineAntennaElement
phased.CosineAntennaElement (Name,Value)

Description
antenna = phased.CosineAntennaElement creates a cosine antenna System object,

antenna. This object models an antenna element whose response is a cosine function
raised to nonnegative powers in the azimuth and elevation directions.

1-435

1 Alphabetical List

1-436

antenna = phased.CosineAntennaElement (Name,Value) creates a cosine antenna
object, antenna, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

FrequencyRange — Operating frequency range
[0 1e20] (default) | non-negative, real-valued, 1-by-2 row vector

Operating frequency range of the antenna, specified as a non-negative, real-valued, 1-by-2
row vector in the form [LowerBound HigherBound]. The antenna element has no
response outside the specified frequency range. Units are in Hz.

Data Types: double

CosinePower — Exponent of cosine pattern
[1.5 1.5] (default) | non-negative scalar | non-negative, real-valued, 1-by-2 vector

Exponents of the cosine pattern, specified as a non-negative scalar or a non-negative,
real-valued, 1-by-2 vector. Exponent values must be real numbers greater than or equal to
zero. When you set CosinePower to a scalar, both the azimuth direction cosine pattern
and the elevation direction cosine pattern are raised to the same power. When you set
CosinePower to a 1-by-2 vector, the first element is the exponent for the azimuth
direction cosine pattern. The second element is the exponent for the elevation direction
cosine pattern.

Example: [1.5 1.3]
Data Types: double

phased.CosineAntennaElement

Usage

Syntax

RESP = antenna(FREQ, ANG)

Description

RESP = antenna(FREQ,ANG) returns the antenna voltage response RESP at operating
frequencies specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

FREQ — Operating frequency of antenna, microphone, transducer
non-negative scalar | non-negative, real-valued, 1-by-L row vector

Operating frequency of antenna, microphone, or transducer, specified as a non-negative
scalar or non-negative, real-valued, 1-by-L row vector. Frequency units are in Hz.

For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie
within the range of values specified by the FrequencyRange or the FrequencyVector
property of the element. Otherwise, the element produces no response and the response
is returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which
use the FrequencyVector property.

Example: [1e8 2e6]
Data Types: double

1-437

1 Alphabetical List

1-438

ANG — Azimuth and elevation angles of response directions
real-valued, 1-by-M row vector | real-valued, 2-by-M matrix

Azimuth and elevation angles of response directions, specified as a real-valued, 1-by-M
row vector or a real-valued, 2-by-M matrix, where M is the number of angular directions.
Angle units are in degrees. The azimuth angle must lie in the range from -180° to 180°,
inclusive. The elevation angle must lie in the range from -90° to 90°, inclusive.

* If ANG is a 1-by-M vector, each element specifies the azimuth angle of the direction. In
this case, the corresponding elevation angle is assumed to be zero.

* If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form
[azimuth; elevation].

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis. See “Azimuth and Elevation Angles”.

Example: [110 125; 15 10]
Data Types: double

Output Arguments

RESP — Voltage response of antenna
complex-valued M-by-L matrix

Voltage response of antenna element, returned as a complex-valued M-by-L matrix. In this
matrix, M represents the number of angles specified in ANG and L represents the number
of frequencies specified in FREQ.

Data Types: double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

phased.CosineAntennaElement

Specific to Antenna and Transducer Element System Objects

directivity Directivity of antenna or transducer element

isPolarizationCapable Antenna element polarization capability

pattern Plot antenna or transducer element directivity and patterns

patternAzimuth Plot antenna or transducer element directivity and pattern versus
azimuth

patternElevation Plot antenna or transducer element directivity and pattern versus
elevation

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Cosine Antenna Response

Construct a cosine antenna element and find its response in one direction. The cosine
response is raised to a power of 1.5 in both azimuth and elevation. The antenna frequency
range lies in the X band (from 8 to 12 GHz) at 10 GHz. Obtain the antenna's response for
an incident angle of 30° azimuth and 5° elevation.

antenna = phased.CosineAntennaElement('FrequencyRange', [8e9 12e9],
'CosinePower',1.5);

fc = 10.0e9;

ang = [30;5];

resp = antenna(fc,ang)

resp = 0.8013

Plot Power Response of Cosine Antenna

Construct a cosine pattern antenna and calculate its response at boresight (0 degrees
azimuth and 0 degrees elevation). Then, plot the antenna pattern. Assume the antenna

1-439

1 Alphabetical List

works between 800 MHz and 1.2 GHz and its operating frequency is 1 GHz. Set the
azimuth exponent to 1.5 and elevation exponent to 2.5.

antenna = phased.CosineAntennaElement('FrequencyRange',[800e6 1.2e9], ..
'CosinePower',[1.5 2.5]1);

fc = 1le9;
resp = antenna(fc,[0;0]);

pattern(antenna,fc,0,-90:90, 'Type', 'powerdb', 'CoordinateSystem', 'polar')

Elevation Cut (azimuth angle = 0.0°)
80

120

] 60
-0
150 207 N 30
Ve N
.II.' '."'
4 Iﬁ'ﬂ ‘.III
| |
180 3 0
i |
II I.l
\
""._ i/

\ /
150 \Hm g -30

-120 -60
-90

Mormalized Power (dB), Broadside at 0.00 °

pattern(antenna, fc,-180:180,0, 'Type', 'powerdb', 'CoordinateSystem', 'polar')

1-440

phased.CosineAntennaElement

Azimuth Cut (elevation angle = 0.0°)
80

120 0 60
= Tlﬂ -/
150 , . 30
|I. \'\.
[\
. \
| 0 \
|
180 - 0
I|
| |
|
|I J;
1 A
150 \ / 30
\'\'\. -
e
-120 50
90

Mormalized Power (dB), Broadside at 0.00 °

Plot 3-D Polar Pattern of Cosine Antenna

Construct a cosine antenna element using default parameters. Assume the antenna
operating frequency is 1 GHz. Then, plot the antenna response in 3-D polar format.

antenna = phased.CosineAntennaElement;
fc = 1e9;

pattern(antenna,fc,[-180:180],[-90:90], 'Type', 'powerdb',
'CoordinateSystem', 'polar')

1-441

1 Alphabetical List

3D Response Pattemn

-20

Az 90

-30
ElID

Mormalized Power (dB)

-35

40

45

Directivity of Cosine Antenna

Compute the directivity of a cosine antenna element at seven azimuth directions centered
around boresight (zero degrees azimuth and zero degrees elevation). All elevation angles
are set to zero degrees.

Create a cosine antenna element system object with the CosinePower exponents set to
1.8.

antenna = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);

1-442

phased.CosineAntennaElement

Set the directivity angles so that the elevation angles are zero. Set the frequency to 1
GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1e9;

Compute the directivity
d = directivity(antenna, freq,ang)
d = 7x1

.3890
.6654
.3985
.6379
.3985
.6654
.3890

~N 00 W OO

The maximum directivity is at boresight.

Plot Azimuth-Cut of Cosine Antenna Response Pattern

Construct a cosine antenna element using default parameters. Then, plot the pattern of
the field magnitude. Assume the antenna operating frequency is 1 GHz. Restrict the
response to the range of azimuth angles from -30 to 30 degrees in 0.1 degree increments.
The default elevation angle is 0 degrees.

antenna = phased.CosineAntennaElement;

fc = 1e9;

pattern(antenna,fc,[-30:0.1:30],0, 'Type', 'efield’,
'CoordinateSystem', 'polar')

1-443

1 Alphabetical List

Azimuth Cut (elevation angle = 0.0°)
80

120 1 60
150 30
Og
0.5 N —
— k!
180 ~ 0

-150 -30

-120 -60
-90

Mormalized Magnitude, Broadside at 0.00 °

Plot Directivity of Cosine Antenna

Construct a cosine-pattern antenna. Assume the antenna works between 1 and 2 GHz and
its operating frequency is 1.5 GHz. Set the azimuth angle cosine power to 2.5 and the
elevation angle cosine power to 3.5. Then, plot an elevation cut of its directivity.

antenna = phased.CosineAntennaElement('FrequencyRange',
[1e9 2e9], 'CosinePower',[2.5,3.5]);

fc = 1.5e9;

pattern(antenna,fc,0,-90:90, 'Type', 'directivity’,
'CoordinateSystem', 'rectangular')

1-444

phased.CosineAntennaElement

Directivity (dBi)

-40 i
S0 .
601 |

00| II

-80 |

Elevation Cut (azimuth angle = 0.0°)

-i00 B0 60 40 -20 0 20 40 60 80 100
Elevation Angle (degrees)

The directivity is maximum at 0 degrees elevation and attains a value of approximately 12
dB.

Limited-Angle Azimuth Pattern of Cosine Antenna

Plot constant-elevation azimuth directivity patterns of a cosine antenna element at 0
degrees and 10 degrees elevation. Assume the operating frequency is 500 MHz.

fc = 500e6;
antenna = phased.CosineAntennaElement('FrequencyRange',[100,900]*1e6,

'CosinePower',[3,2]);
patternAzimuth(antenna, fc,[0 30])

1-445

1 Alphabetical List

0.0 deg elevation ®

Azimu 30.0 deg elevation) MHz)
j=0
120 10 60
4]
150
180

-150

-120 60

-90

Directivity (dBi), Broadside at0.00 ®

Plot a limited range of azimuth angles by specifying the Azimuth parameter. Note the
change in scale.

patternAzimuth(antenna, fc,[0 30], "Azimuth',-20:20)

1-446

phased.CosineAntennaElement

0.0 deg elevation ®

Azimu 30.0 deg elevation) MHz)
=0
120 60
10
150 9 30
&8
Pl
180 < D 0
-150 -30
-120 60
-90

Directivity (dBi), Broadside at0.00 ®

Limited-Angle Elevation Pattern of Cosine Antenna

Plot constant-azimuth elevation directivity patterns of a cosine antenna element at 45 and
55 degrees azimuth. Assume the operating frequency is 500 MHz.

fc = 500e6;

antenna = phased.CosineAntennaElement('FrequencyRange',[100,900]*1e6,
'CosinePower',[3,2]1);

patternElevation(antenna, fc, [45 55])

1-447

1 Alphabetical List

45.0 deg azimuth &

Elevati 556.0 deg azimuth |0 MHz)
j=.0)
120 0 60
150
180
-150
-120 60

-90

Directivity (dBi), Broadside at0.00 ®

Plot a limited range of elevation angles using the Elevation parameter. Note the change in
scale.

patternElevation(antenna, fc,[45 55], 'Elevation', -20:20)

1-448

phased.CosineAntennaElement

45.0 deg azimuth &

Elevati 556.0 deg azimuth |0 MHz)
=0
120 60
1
0
150 -1 30
2
-2
-

180 = 0
-150 -30
-120 60
-90

Directivity (dBi), Broadside at0.00 ®

Cosine Antenna Does Not Support Polarization

Create a cosine antenna element using the phased.CosineAntennaElement System
object™ and show that it does not support polarization.

antenna = phased.CosineAntennaElement('FrequencyRange',[1.0,10]*1e9);
isPolarizationCapable(antenna)

ans = logical
0

1-449

1 Alphabetical List

1-450

The returned value 0 shows that the antenna element does not support polarization.

More About

Cosine Response
The object returns the field response (also called field pattern)

f(az, el) = cos™(az)cos"(el)
of the cosine antenna element.

In this expression

* azis the azimuth angle.

* el is the elevation angle.

* The exponents m and n are real numbers greater than or equal to zero.

The response is defined for azimuth and elevation angles between -90° and 90°, inclusive,
and is always positive. There is no response at the backside of a cosine antenna. The
cosine response pattern achieves a maximum value of 1 at 0° azimuth and 0° elevation.

Larger exponent values narrow the response pattern of the element and increase the
directivity.

The power response (or power pattern) is the squared value of the field response.

2m(

P(az, el) = cos*™(az)cos?"(el)

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

phased.CosineAntennaElement

* The pattern, patternAzimuth, and patternElevation object functions are not
supported.

* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

phased.ConformalArray | phased.CrossedDipoleAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement |
phased.ShortDipoleAntennaElement | phased.UCA | phased.ULA | phased.URA |
phitheta2azel | uv2azel

Introduced in R2011a

1-451

1 Alphabetical List

1-452

phased.CrossedDipoleAntennaElement

Package: phased

Crossed-dipole antenna element

Description

The phased.CrossedDipoleAntennaElement System object models a crossed-dipole
antenna element which is used to generate circularly polarized fields. A crossed-dipole
antenna is formed from two orthogonal short-dipole antennas. By default, one dipole lies
along y-axis and the other along the z-axis in the antenna local coordinate system. You can
rotate the antenna in the yz-plane using the RotationAngle property. This antenna
object generates right hand or left hand circularly polarized fields, or linearly polarized
fields controlled using the Polarization property. These fields are pure along the x-axis
(defined by 0° azimuth and 0° elevation angles).

To compute the response of the antenna element:

1 Create the phased.CrossedDipoleAntennaElement object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax

antenna
antenna

phased.CrossedDipoleAntennaElement
phased.CrossedDipoleAntennaElement (Name,Value)

Description

antenna = phased.CrossedDipoleAntennaElement creates a crossed-dipole
antenna with default property values.

phased.CrossedDipoleAntennaElement

antenna = phased.CrossedDipoleAntennaElement (Name,Value) creates a
crossed-dipole antenna with each specified property set to the specified value. You can
specify additional name-value pair arguments in any order as
(Namel,Valuel,...,NameN,ValueN).

Properties

Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

FrequencyRange — Operating frequency range
[0 1e20] (default) | non-negative, real-valued, 1-by-2 row vector

Operating frequency range of the antenna, specified as a non-negative, real-valued, 1-by-2
row vector in the form [LowerBound HigherBound]. The antenna element has no
response outside the specified frequency range. Units are in Hz.

Data Types: double

RotationAngle — Crossed-dipole rotation angle
0 (default) | scalar between -45° and +45°

Crossed-dipole rotation angle, specified as a scalar between -45° and +45°. The rotation
angle specifies the angle of rotation of the two dipoles around the x-axis. The rotation
angle is measured counter-clockwise around the x-axis looking towards to origin. A
default value of 0° corresponds to the case where one dipole is along the z-axis and the
other dipole is along the y-axis. Units are in degrees.

Data Types: double

Polarization — Crossed-dipole field polarization
"RHCP' (default) | 'LHCP' | 'Linear’

Polarization of the field generated by the antenna, specified as 'RHCP', 'LHCP', or
'Linear’.

1-453

1 Alphabetical List

* 'RHCP' - right hand circularly polarize field. The horizontal field has a 90° phase
advance compared to the vertical field.

* 'LHCP' - left hand circularly polarize field. The horizontal field has a 90° delay
compared to the vertical field.

* 'Linear' - linearly polarized field. The horizontal and vertical fields are in phase.

Example: 'Linear’

Data Types: char | string
Usage

Syntax

RESP = antenna(FREQ, ANG)

Description

RESP = antenna(FREQ,ANG) returns the antenna voltage response, RESP, at the
operating frequencies specified in FREQ and in the directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This
initialization locks nontunable properties (MATLAB) and input specifications, such as
dimensions, complexity, and data type of the input data. If you change a nontunable
property or an input specification, the System object issues an error. To change
nontunable properties or inputs, you must first call the release method to unlock the
object.

Input Arguments

FREQ — Operating frequency of antenna, microphone, transducer
non-negative scalar | non-negative, real-valued, 1-by-L row vector

Operating frequency of antenna, microphone, or transducer, specified as a non-negative
scalar or non-negative, real-valued, 1-by-L row vector. Frequency units are in Hz.

1-454

phased.CrossedDipoleAntennaElement

For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie
within the range of values specified by the FrequencyRange or the FrequencyVector
property of the element. Otherwise, the element produces no response and the response
is returned as —Inf. Most elements use the FrequencyRange property except for
phased.CustomAntennaElement and phased.CustomMicrophoneElement, which
use the FrequencyVector property.

Example: [1e8 2e6]
Data Types: double

ANG — Azimuth and elevation angles of response directions
real-valued, 1-by-M row vector | real-valued, 2-by-M matrix

Azimuth and elevation angles of response directions, specified as a real-valued, 1-by-M
row vector or a real-valued, 2-by-M matrix, where M is the number of angular directions.
Angle units are in degrees. The azimuth angle must lie in the range from -180° to 180°,
inclusive. The elevation angle must lie in the range from -90° to 90°, inclusive.

* If ANG is a 1-by-M vector, each element specifies the azimuth angle of the direction. In
this case, the corresponding elevation angle is assumed to be zero.

» If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form
[azimuth; elevation].

The azimuth angle is the angle between the x-axis and the projection of the direction
vector onto the xy plane. This angle is positive when measured from the x-axis toward the
y-axis. The elevation angle is the angle between the direction vector and xy plane. This
angle is positive when measured towards the z-axis. See “Azimuth and Elevation Angles”.

Example: [110 125; 15 10]
Data Types: double

Output Arguments

RESP — Antenna voltage response
structure

Voltage response of the antenna, returned as a MATLAB structure with fields H and V. H
and V contain responses for the horizontal and vertical polarization components of the
radiation fields, respectively. Both H and V are complex-valued, M-by-L matrices. M
represents the number of angles specified in ANG, and L represents the number of
frequencies specified in FREQ.

1-455

1 Alphabetical List

1-456

Data Types: double

Object Functions

To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Antenna and Transducer Element System Objects

directivity Directivity of antenna or transducer element

isPolarizationCapable Antenna element polarization capability

pattern Plot antenna or transducer element directivity and patterns

patternAzimuth Plot antenna or transducer element directivity and pattern versus
azimuth

patternElevation Plot antenna or transducer element directivity and pattern versus
elevation

Common to All System Objects

step Run System object algorithm

release Release resources and allow changes to System object property values and
input characteristics

reset Reset internal states of System object

Examples

Compute Crossed-Dipole Antenna Response

Find the response of a crossed-dipole antenna at boresight, 0° azimuth and 0° elevation,
and off-boresight at 30° azimuth and 0° elevation. The antenna operates at 250 MHz.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[100 900]*1e6);
ang = [0 30;0 0];

fc = 250e6;

resp = antenna(fc,ang);

disp(resp.H)

phased.CrossedDipoleAntennaElement

0.0000 - 1.2247i
0.0000 - 1.0607i

disp(resp.V)

-1.2247
-1.2247

Plot Response of a Crossed-Dipole Antenna

Plot the response patterns of a crossed-dipole antenna used in an L-band radar with a
frequency range between 1-2 GHz. First, set up the radar parameters, and obtain the
vertical and horizontal polarization responses in five different directions specified by

elevation angles of -30, -15, 0, 15 and 30 degrees, all at 0 degrees azimuth angle. The
responses are computed at an operating frequency of 1.5 GHz.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);
fc = 1.5€9;

resp = antenna(fc,[0,0,0,0,0;-30,-15,0,15,30]);

[resp.V, resp.H]

ans = 5x2 complex

-1.0607 + 0.00001 0.0000 - 1.22471
-1.1830 + 0.00001 0.0000 - 1.22471
-1.2247 + 0.00001 0.0000 - 1.22471
-1.1830 + 0.00001 0.0000 - 1.22471
-1.0607 + 0.00001 0.0000 - 1.22471

Next, draw a 3-D plot of the combined polarization response.

pattern(antenna, fc,-180:180,-90:90, 'CoordinateSystem', 'polar’,
'Type', 'powerdb', 'Polarization', 'combined")

1-457

1 Alphabetical List

1-458

3D Response Pattern

Az D
EID

Mormalized Power (dB)

-3

Directivity of Crossed-Dipole Antenna Element

Compute the directivity of a crossed-dipole antenna element in several different
directions.

Create a crossed-dipole antenna element system object.
antenna = phased.CrossedDipoleAntennaElement;

Set the angles of interest to be at zero-degrees constant elevation angle. The seven
azimuth angles are centered around boresight (zero degrees azimuth and zero degrees
elevation). Set the desired frequency to 1 GHz.

phased.CrossedDipoleAntennaElement

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1e9;

Compute the directivity along the constant elevation cut.
d = directivity(antenna, freq,ang)
d = 7x1

.1811
.4992
.6950
.7610
.6950
.4992
.1811

R e el]

Plot 3-D Polar Patterns of Crossed-Dipole Antenna

Construct a crossed-dipole antenna element that operates in the frequency range from
100 MHz to 1.5 GHz. Then, plot the 3-D polar power pattern for the horizontal
polarization component. Assume the antenna operates at 1 GHz.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[100 1500]*1e6);

fc = 1e9;

pattern(antenna,fc,-180:180,-90:90, 'Type', 'powerdb",
'CoordinateSystem', 'polar', 'Polarization', 'H")

1-459

1 Alphabetical List

3D Response Patten

Next, plot the vertical polarization component.

pattern(antenna, fc,-180:180,-90:90, 'Type', 'powerdb',
'CoordinateSystem', 'polar', 'Polarization','V")

1-460

Mormalized Power (dB)

phased.CrossedDipoleAntennaElement

3D Response Patten

Az 0D
| B0 1-10

-20

-30

Mormalized Power (dB)

-35

40

-45

Plot Crossed-Dipole Antenna Pattern at Constant Elevation

Construct a crossed-dipole antenna element. Then, plot the pattern of the horizontal
component of the field magnitude at an elevation angle of 0 degrees. Assume the antenna
operating frequency is 1 GHz. Restrict the response to the range of azimuth angles from
-70 to 70 degrees in 0.1 degree increments.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[0.5 1.5]*1e9);

fc = 1e9;

pattern(antenna, fc,-70:0.1:70,0, 'Type', 'efield’,
'CoordinateSystem', 'polar', 'Polarization', 'combined')

1-461

1 Alphabetical List

Azimuth Cut (elevation angle = 0.0°)
80

120] 60
ﬂ.5|5
150 0g 30
Ogs _——o
-___.-' -\H‘x\.\
0 \‘1
180 O.15 | O
N /
150 30
-120 60
80

Mormalized Magnitude, Broadside at 0.00 °

Plot Directivity of Crossed-Dipole Antenna

Create a crossed-dipole antenna. Assume the antenna works between 1 and 2 GHz and its
operating frequency is 1.5 GHz. Then, plot the directivity at a constant azimuth of 0°.
antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1e9 2e9]);

fc = 1.5e9;

pattern(antenna,fc,0,-90:90, 'Type', 'directivity’,
'CoordinateSystem', 'rectangular')

1-462

phased.CrossedDipoleAntennaElement

Directivity (dBi)

f '.“
f'f N
i kY
f \
0.5 / t T
Iln'
|Illl
il
-'.l
0
Iln'
I 3
/ \
0.5 _."ll "-._ T
§ Y
/ A
/ ,

Elevation Cut (azimuth angle = 0.0°)
2 F T T T T T T T T T]

151 / \ |
rd A"
.I'; '\'\.
i

A /:(flr I I I I I I | \ |

-i00 B0 60 40 -20 0 20 40 60 80 100
Elevation Angle (degrees)

The directivity is maximum at 0° elevation and attains a value of approximately 1.75 dB.

Plot Azimuth Pattern of Crossed-Dipole Antenna Element

Plot the azimuth directivity pattern of a crossed-dipole antenna at two different
elevations: 0° and30°. Assume the operating frequency is 500 MHz.

fc = 500e6;

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[100,900]*1e6);

patternAzimuth(antenna, fc,[0 30])

1-463

1 Alphabetical List

0.0 deg elevation ®

Azimu 30.0 deg elevation) MHz)
j=.0)

120 60

150

-120 -60
-90

Directivity (dBi), Broadside at 0.00 °

Plot a limited range of azimuth angles using the Azimuth parameter. Notice the change
in scale.

patternAzimuth(antenna, fc,[0 30], "'Azimuth',[-20:20])

1-464

phased.CrossedDipoleAntennaElement

0.0 deg elevation ®

Azimu 30.0 deg elevation) MHz)
= 0]
120 175 60
15
150 30
?.25
180 > 0

-150 -30

-120 60

-90

Directivity (dBi), Broadside at0.00 ®

Plot Elevation Pattern of Crossed-Dipole Antenna Element

Plot the elevation directivity pattern of a crossed-dipole antenna at two different

azimuths: 45° and 55°. Assume the operating frequency is 500 MHz.

fc = 500e6;

sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[100,900]*1e6);
patternElevation(sCD, fc, [45 55])

1-465

1 Alphabetical List

45.0 deg azimuth &

Elevati 556.0 deg azimuth |0 MHz)
j=0
120 a5 60
a
150 30
FF___\-_\-\-H"‘-\-\.\ ___""h-.._\‘ :
/___.-'_ -, 'ﬂ-_\ .
|':. -‘-IIII
180 { | 0
h
s I T
-150 -30
-120 60

-90

Directivity (dBi), Broadside at 0.00 °

Plot a reduced range of elevation angles using the Elevation parameter. Notice the
change in scale.

patternElevation(sCD, fc, [45 55], 'Elevation',-20:20)

1-466

phased.CrossedDipoleAntennaElement

45.0 deg azimuth &

Elevati 556.0 deg azimuth |0 MHz)
=0
120 &0
400
150 200 30
0 _
180 = 0
xle-3
-150 -30
-120 60
90

Directivity (dBi), Broadside at0.00 ®

Vertical and Horizontal Responses of Crossed-Dipole Antenna

This example shows how to create a crossed-dipole antenna operating between 100 and
900 MHz and then how to plot its vertical and horizontal polarization response at 250
MHz in the form of a 3-D polar plot.

antenna = phased.CrossedDipoleAntennaElement(...
'FrequencyRange',[100 900]*1eb6);

pattern(antenna,250e6,-180:180,-90:90, 'CoordinateSystem', 'polar', 'Polarization','V',
'Type', 'powerdb')

1-467

1 Alphabetical List

3D Response Patten

Az0
1 90 1-10

Mormalized Power (dB)

The antenna pattern of the vertical-polarization component is almost isotropic and has a
maximum at 0° elevation and 0° azimuth, as shown in the figure above.

Plot the antenna's horizontal polarization response. The pattern of the horizontal
polarization response also has a maximum at 0° elevation and 0° azimuth but no response
at +90° azimuth.

pattern(antenna,250e6,-180:180,-90:90, 'CoordinateSystem', 'polar', 'Polarization', 'H',
'Type', 'powerdb"')

1-468

phased.CrossedDipoleAntennaElement

3D Response Patten

Mormalized Power (dB)

Crossed-Dipole Antenna Supports Polarization

Show that the phased.CrossedDipoleAntennaElement antenna element supports
polarization.

antenna = phased.CrossedDipoleAntennaElement;
isPolarizationCapable(antenna)

ans = logical
1

1-469

1 Alphabetical List

1-470

The returned value of 1 shows that the crossed-dipole antenna element supports
polarization.

Plot 3-D Polar Patterns of Rotated Crossed-Dipole Antenna

Construct a crossed-dipole antenna element designed to operate in the frequency range
from 100 MHz to 1.5 GHz. Assume the polarization is linear. Rotate the antenna by -45
degrees. Plot the 3-D polar power pattern for the horizontal and vertical polarization
components at 1 GHz.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[100 1500]*1e6,
'RotationAngle',-45.0, 'Polarization', 'Linear');

fc = 1e9;

pattern(antenna, fc,-180:180,-90:90, 'Type', 'powerdb', 'Normalize', false,
'CoordinateSystem', 'polar', 'Polarization', 'H")

phased.CrossedDipoleAntennaElement

3D Response Patten

Power (dB)

Next, plot the vertical polarization component.

pattern(antenna, fc,-180:180,-90:90, 'Type', 'powerdb', 'Normalize', false,
'CoordinateSystem', 'polar', 'Polarization','V")

1-471

1 Alphabetical List

3D Response Patten

-15

-20

Power (dB)

-25

-30

-35
-40

-45

Algorithms
The total response of a crossed-dipole antenna element is a combination of its frequency
response and spatial response. phased.CrossedDipoleAntennaElement calculates

both responses using nearest neighbor interpolation, and then multiplies the responses to
form the total response.

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

1-472

phased.CrossedDipoleAntennaElement

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* The pattern, patternAzimuth, and patternElevation object functions are not
supported.

* See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also

phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement |
phased.ShortDipoleAntennaElement | phased.UCA | phased.ULA | phased.URA |
phitheta2azel | phitheta2azelpat | uv2azel | uv2azelpat

Introduced in R2013a

1-473

1 Alphabetical List

1-474

phased.CustomAntennaElement

Package: phased

Custom antenna element

Description

The phased.CustomAntennaElement object models an antenna element with a custom
response pattern. The response pattern can be defined for polarized or non-polarized
fields.

To compute the response of the antenna element for specified directions:

Define and set up your custom antenna element. See “Construction” on page 1-474.

2 Call step to compute the antenna response according to the properties of
phased.CustomAntennaElement. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation
defined by the System object, call the object with arguments, as if it were a function. For
example, y = step(obj,x) andy = obj(x) perform equivalent operations.

Construction

H = phased.CustomAntennaElement creates a system object, H, to model an antenna
element with a custom response pattern. How the response pattern is specified depends
upon whether polarization is desired or not. The default pattern has an isotropic spatial
response.

» To create a nonpolarized response pattern, set the SpecifyPolarizationPattern
property to false (default). Then, use the MagnitudePattern property to set the
response pattern.

» To create a polarized response pattern, set the SpecifyPolarizationPattern
property to true. Then, use any or all of the HorizontalMagnitudePattern,

phased.CustomAntennaElement

HorizontalPhasePattern, VerticalMagnitudePattern, and
VerticalPhasePattern properties to set the response pattern.

The output response of the step method depends on whether polarization is set or not.

H = phased.CustomAntennaElement (Name,Value) creates a custom antenna object,
H, with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Namel,Valuel,...,NameN,ValueN).

Properties

FrequencyVector
Response and pattern frequency vector

Specify the frequencies (in Hz) at which the frequency response and antenna patterns are
to be returned, as a 1-by-L row vector. The elements of the vector must be in increasing
order. The antenna element has no response outside the frequency range specified by the
minimum and maximum elements of the frequency vector.

Default: [0 1e20]
AzimuthAngles
Azimuth angles

Specify the azimuth angles (in degrees) as a length-P vector. These values are the azimuth
angles where the custom radiation pattern is to be specified. P must be greater than 2.
The azimuth angles must lie between -180° and 180° and be in strictly increasing order.

Default: [-180:180]
ElevationAngles
Elevation angles

Specify the elevation angles (in degrees) as a length-Q vector. These values are the
elevation angles where the custom radiation pattern is to be specified. Q must be greater
than 2. The elevation angles must lie between -90° and 90° and be in strictly increasing
order.

Default: [-90:90]

1-475

1 Alphabetical List

1-476

FrequencyResponse
Frequency responses of antenna element

Specify the frequency responses in decibels measured at the frequencies defined in
FrequencyVector property as a 1-by-L row vector. L equals the length of the vector
specified in the FrequencyVector property.

Default: [0 0]
SpecifyPolarizationPattern
Polarized array response

* When the SpecifyPolarizationPattern property is set to false, the antenna
element transmits or receives non-polarized radiation. In this case, use the
MagnitudePattern property to set the antenna response pattern.

* When the SpecifyPolarizationPattern property is set to true, the antenna
element transmits or receives polarized radiation. In this case, use the
HorizontalMagnitudePattern and HorizontalPhasePattern properties to set
the horizontal polarization response pattern and the VerticalMagnitudePattern
and VerticalPhasePattern properties to set the vertical polarization response
pattern.

Default: false
MagnitudePattern
Magnitude of combined antenna radiation pattern

The magnitude of the combined polarization antenna radiation pattern specified as a Q-
by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to false. Magnitude units are in dB.

» If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

» If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for
the corresponding frequency specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation direction, it is converted to -
Inf, indicating zero response in that direction. The custom antenna object uses
interpolation to estimate the response of the antenna at a given direction. To avoid

phased.CustomAntennaElement

interpolation errors, the custom response pattern must contain azimuth angles in the
range [-180,180] degrees. Set the range of elevation angles to [—90,90] degrees.

Default: A 181-by-361 matrix with all elements equal to 0 dB
PhasePattern
Phase of combined antenna radiation pattern

The phase of the combined polarization antenna radiation pattern specified as a Q-by-P
matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to false. Phase units are in degrees.

» If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

» If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for
the corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna at a
given direction. To avoid interpolation errors, the custom response pattern must contain
azimuth angles in the range [-180°,180°]. Set the range of elevation angles to [-90°,90°].

Default: A 181-by-361 matrix with all elements equal to 0
HorizontalMagnitudePattern
Magnitude of horizontal polarization component of antenna radiation pattern

The magnitude of the horizontal polarization component of the antenna radiation pattern
specified as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude units are in dB.

» If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

» If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for
the corresponding frequency specified in the FrequencyVector property.

If the magnitude pattern contains a NaN at any azimuth and elevation direction, it is
converted to - Inf, indicating zero response in that direction. The custom antenna object
uses interpolation to estimate the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern must contain azimuth angles in the
range [-180,180]° and elevation angles in the range [-90,90]°.

1-477

1 Alphabetical List

1-478

Default: A 181-by-361 matrix with all elements equal to 0 dB
HorizontalPhasePattern
Phase of horizontal polarization component of antenna radiation pattern

The phase of the horizontal polarization component of the antenna radiation pattern
specified as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase units are in degrees.

+ If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

» If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for
the corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna at a
given direction. To avoid interpolation errors, the custom response pattern must contain
azimuth angles in the range [-180,180] ° and elevation angles in the range [-90,90]°.

Default: A 181-by-361 matrix with all elements equal to 0°
VerticalMagnitudePattern
Magnitude of vertical polarization component of antenna radiation pattern

The magnitude of the vertical polarization component of the antenna radiation pattern
specified as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude units are in dB.

+ If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

» If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for
the corresponding frequency specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation direction, it is converted to -
Inf, indicating zero response in that direction. The custom antenna object uses
interpolation to estimate the response of the antenna at a given direction. To avoid
interpolation errors, the custom response pattern must contain azimuth angles in the
range[—180,180] ° and elevation angles in the range [-90,90] °.

Default: A 181-by-361 matrix with all elements equal to 0 dB

phased.CustomAntennaElement

VerticalPhasePattern
Phase of vertical polarization component of antenna radiation pattern

The phase of the vertical polarization component of the antenna radiation pattern
specified as a Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase units are in degrees.

» If the value of this property is a Q-by-P matrix, the same pattern is applied to all
frequencies specified in the FrequencyVector property.

» If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for
the corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna at a
given direction. To avoid interpolation errors, the custom response pattern must contain
azimuth angles in the range [-180,180] ° and elevation angles in the range [-90,90]°.

Default: A 181-by-361 matrix with all elements equal to 0°
MatchArrayNormal
Match element normal to array normal

Set this property to true to align the antenna element to an array normal. The antenna
pattern is rotated so that the x-axis of the element coordinate system points along the
array normal. This property is used only when the antenna element belongs to an array.
Use the property in conjunction with the ArrayNormal property of the phased.URA and
phased.UCA System objects. Set this property to false to use the element pattern
without rotation. The default value is true.

1-479

1 Alphabetical List

1-480

Methods

directivity Directivity of custom antenna element

isPolarizationCapable Polarization capability

pattern Plot custom antenna element directivity and patterns

patternAzimuth Plot custom antenna element directivity or pattern versus azimuth

patternElevation Plot custom antenna element directivity or pattern versus
elevation

plotResponse Plot response pattern of antenna

step Output response of antenna element

Common to All System Objects

release |Allow System object property value changes

Examples

Response and Directivity of Custom Antenna

Create a user-defined antenna with a cosine pattern. Then, plot an elevation cut of the
antenna's power response.

The user-defined pattern is omnidirectional in the azimuth direction and has a cosine
pattern in the elevation direction. Assume the antenna operates at 1 GHz. Obtain the
response at 20° azimuth and 30° elevation.

fc = 1e9;

azang = -180:180;

elang = -90:90;

magpattern = mag2db(repmat(cosd(elang)',1,numel(azang)));

phasepattern = zeros(size(magpattern));

antenna = phased.CustomAntennaElement('AzimuthAngles',azang,
'ElevationAngles',elang, 'MagnitudePattern',magpattern,
'PhasePattern',phasepattern);

resp = antenna(fc,[20;30])

resp = 0.8660

phased.CustomAntennaElement

Plot an elevation cut of the power response.

pattern(antenna, fc,20,-90:90, 'CoordinateSystem', 'polar', 'Type', 'powerdb"')

Elevation Cut (azimuth angle = 20.0°)
90

120 0 &0
- T T
T
150 -2 30
-3
.4{] Il
180 -8 | 0
II
-150 \ -30
S y -
-120 60
80

Mormalized Power (dB), Broadside at 0.00 °

Plot an elevation cut of the directivity.

pattern(antenna, fc,20,-90:90, 'CoordinateSystem', 'polar', 'Type', 'directivity"')

1-481

1 Alphabetical List

Elevation Cut (azimuth angle = 20.0°)
80

120 0 60
r ’ .-\-H\\
150 {29 \\ 30
| _3{] .\"'-.
lIII
4] IlI
180 |0
‘ 'II
.'lil
| _,.'"
II
-150 /_30
-120 60

Directivity (dBi), Broadside at0.00 ®

Antenna Radiation Pattern in U-V Coordinates

Define a custom antenna in u-v space. Then, calculate and plot the response.

Define the radiation pattern (in dB) of an antenna in terms of u and v coordinates within
the unit circle.

u -1:0.01:1;

\% -1:0.01:1;

[u grid,v _grid] = meshgrid(u,v);
pat uv = sqrt(l - u grid.”2 - v _grid.”2);
pat _uv(hypot(u grid,v grid) >= 1) = 0;

1-482

phased.CustomAntennaElement

Create an antenna with this radiation pattern. Convert u-v coordinates to azimuth and
elevation coordinates.

[pat_azel,az,el] = uv2azelpat(pat uv,u,v);
array = phased.CustomAntennaElement('AzimuthAngles',az, 'ElevationAngles’,el, .
'MagnitudePattern',mag2db(pat_azel), 'PhasePattern',45*ones(size(pat_azel)));

Calculate the response in the direction u = 0.5, v = 0. Assume the antenna operates at 1
GHz. The output of the step method is in linear units.

dir uv = [0.5;0];

dir_azel = uv2azel(dir_uv);
fc = 1e9;

resp = array(fc,dir_azel)

0.6124 + 0.61241

resp
Plot the 3D response in u-v coordinates.

pattern(array,fc,[-1:.01:1],[-1:.01:1], 'CoordinateSystem', "uv', 'Type"', 'powerdb")

1-483

1 Alphabetical List

3D Response Pattern in u-v space

=20 4
40

50 J A "'!""I"'f'

Mormalized Power (dB)
Mormalized Power (dB)

Display the antenna response as a line plot in u-v coordinates.

pattern(array,fc,[-1:.01:1],0, 'CoordinateSystem', 'uv', 'Type', 'powerdb")

1-484

phased.CustomAntennaElement

MNormalized Power (dB)

Response in U Space

=30 1 7

401 7

60 | -

__1 DD i i i i i i i i i
-1 08 06 04 02 0 0.2 0.4 0.6 0.8 1

Polarized Antenna Radiation Patterns

Model a short dipole antenna oriented along the x-axis of the local antenna coordinate
system. For this type of antenna, the horizontal and vertical components of the electric

field are given by Ey = 4 Z)Il'jlf:L J(ZE{”L

sin(az) and Ey = — sin(el)cos(az).

Specify a normalized radiation pattern of a short dipole antenna terms of azimuth, az, and
elevation, el, coordinates. The vertical and horizontal radiation patterns are normalized to
a maximum of unity.

1-485

1 Alphabetical List

1-486

az [-180:180];
el [-90:90];
[az grid,el grid] = meshgrid(az,el);
horz pat azel = ...
mag2db(abs(sind(az_grid)));
vert pat azel = ...
mag2db(abs(sind(el grid).*cosd(az grid)));

Set up the antenna. Specify the SpecifyPolarizationPattern property to produce
polarized radiation. In addition, use the HorizontalMagnitudePattern and
VerticalMagnitudePattern properties to specify the pattern magnitude values. The
HorizontalPhasePattern and VerticalPhasePattern properties take default
values of zero.

sCust = phased.CustomAntennaElement(...
'AzimuthAngles',az, 'ElevationAngles',k el,...
'SpecifyPolarizationPattern', true, ...
'HorizontalMagnitudePattern',horz _pat azel,...
'VerticalMagnitudePattern',vert pat azel);

Assume the antenna operates at 1 GHz.
fc = 1e9;
Display the vertical response pattern.

pattern(sCust,fc,[-180:180],[-90:90], ...
'CoordinateSystem', 'polar',...
'Type', 'powerdb’', ...
'Polarization','V")

phased.CustomAntennaElement

3D Response Patten

Mormalized Power (dB)

Display the horizontal response pattern.

pattern(sCust,fc,[-180:180],[-90:90], ...
'CoordinateSystem', 'polar’,...
'Type', 'powerdb’', ...
'Polarization','H")

1-487

1 Alphabetical List

3D Response Patten

Az 90 -30
ElO

Mormalized Power (dB)

The combined polarization response, shown below, illustrates the x-axis null of the dipole.

pattern(sCust,fc,[-180:180],[-90:90], ...
'CoordinateSystem', 'polar',...
'Type', 'powerdb’', ...
'Polarization', 'combined')

1-488

phased.CustomAntennaElement

3D Response Patten

z 1-5

Az 0D
Fieo {10

-20

Az 90 -30
ElI O

Mormalized Power (dB)

35
40

-45

Match Custom Antenna Normal to Array Normal

Define a custom antenna in u-v space. Show how the array response pattern is affected by
the choice of the MatchArrayNormal property of the
phased.CustomAntennaElement.

Define the response pattern (in dB) of an antenna as a function of u and v coordinates
within the unit circle. The antenna operates at 1 GHz.

fc = 1e9;
¢ = physconst('LightSpeed');

1-489

1 Alphabetical List

1-490

u -1:0.01:1;

\% -1:0.01:1;

[u grid,v _grid] = meshgrid(u,v);

pat uv = sqrt(l - u grid.”2 - v _grid.”2);
pat_uv(hypot(u grid,v grid) >= 1) = 0;

Create a custom antenna with this pattern. Convert u-v coordinates to azimuth and
elevation coordinates. Set MatchArrayNormal to false.

[pat_azel,az,el] = uv2azelpat(pat uv,u,v);

element = phased.CustomAntennaElement('AzimuthAngles',az, 'ElevationAngles', el,
'MagnitudePattern',mag2db(pat _azel), 'PhasePattern',45*on